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Cryptography

Goal: enable “secure” communication in the presence of adversaries

Alice

internet, phone line, . . .

Bob

Eve

eavesdrops
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Encryption

Alice sends a ciphertext to Bob
Only Bob can recover the plaintext

Confidentiality

To recover the plaintext

to find the whole plaintext ?

to get some information
about it ?

Which means can be used ?

just the ciphertext ?

some extra information ?
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Why “Provable Security” ?

Once a cryptosystem is described, how can we prove its security?

by trying to exhibit an attack

attack found
V system insecure!

attack not found
V ?

by proving that no attack exists
under some assumptions

attack found
V false assumption

”Textbook” cryptosystems cannot be used as such

Pratictioners need formatting rules to ensure operability.
 Paddings are used in practice : heuristic security

Provable security is needed in upcoming systems.
This is no longer just theory.

Provable security is fun! :-)
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Who is the bad guy?

We are protecting ourselves from the evil Eve, who

is a probabilistic polynomial time Turing machine (PPTM)
(Church-Turing thesis)

knows all the algorithms (Kercko↵’s principles)

has full access to communication media.
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Proof by reduction

A adversary against e.g. one-wayness
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Proof by reduction

A

A adversary against e.g. one-wayness
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Proof by reduction

A

Instance I of a problem P
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Proof by reduction

A

R

Instance I of a problem P

Solution of I
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Proof by reduction

A

R

Instance I of a problem P

Solution of I

P intractable ! contradiction
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The Methodology of “Provable Security”

1 Define goal of adversary

2 Define security model

3 Define complexity assumptions

4 Provide a proof by reduction

5 Check proof

6 Interpret proof
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Secret-Key Encryption
Symmetric encryption: Alice and Bob share a “key” K

Alice Bob

K K

??

Bob can use the same method to send messages to Alice.
 symmetric setting

How did Alice and Bob establish K?
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The solution: Public-Key Cryptography

first proposed by Di�e and Hellman:

W.Di�e and M.E.Hellman,
New directions in cryptography
IEEE Trans. Inform. Theory, IT-22, 6, 1976, pp. 644-654.

2015 Turing Award

It 1997 the GCHQ revealed that they new it already in 1970 (James Ellis).
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Public-Key Encryption

Asymmetric encryption: Bob owns two “keys”

a public key known by everybody (including Alice)

a secret key known by Bob only

Alice Bob

skBpk
B

??
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But is it possible?

In “physical world”: yes!
 Example: padlock

anyone can lock it

the key is needed to unlock

Di�e and Hellman proposed the public-key cryptography in 1976.

They just proposed the concept, not the implementation.
But they have shown a protocol for key-exchange
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Di�e-Hellman Key Exchange
(G, ·) a finite cyclic group; hgi = G

Alice

Ka = y a

b

ya = g a

yb = gb

Bob

Kb = yb

a

Eve

Ka = y a

b
= (gb)a = g ab = (g a)b = yb

a
= Kb
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Di�e-Hellman Key Exchange: Security

Eve knows:

(G, g)

ya = g a

yb = gb

and should have “no information” on K = g ab.

If finding a from ya is easy then the DH key exchange is not secure.

Even if it is hard, then
. . . the scheme may also not be completely secure

How to choose the group G?
see Pierrick’s lectures

Do we really need a group?
see Luca’s lectures
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Public-Key Encryption

An asymmetric encryption scheme is a triple of algorithms (K, E ,D) where

K is a probabilistic key generation algorithm which returns random pairs of
secret and public keys (sk , pk) depending on the security parameter ,

E is a probabilistic encryption algorithm which takes on input a public key
pk and a plaintext m 2M, runs on a random tape u 2 U and returns a
ciphertext c ,

D is a deterministic decryption algorithm which takes on input a secret key
sk , a ciphertext c and returns the corresponding plaintext m or the symbol ?.

If (sk , pk) K, then Dsk (Epk(m, u)) = m for all (m, u) 2M⇥ U .
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Encryption: Security Notions

Encryption is supposed to provide confidentiality of the data.

But what exactly does this mean?

Security goal But . . .
Recovery of secret key True if data is

is infeasible sent in the clear
Obtaining plaintext from Might be able to obtain
ciphertext is infeasible half the plaintext

etc etc

So what is a secure encryption scheme ?
Not an easy question to answer . . .

Attackers should not be able to compute any information about m.
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How to formalize it ?

Attackers should not be able to compute any information about m.

Probabilistic approach

M some random variable that takes values from M

K random variable distributed uniformly over K

C = EK (M)

Definition
An encryption scheme is perfectly secret if for every random variable M and every
m 2M and every c 2 C with Pr(C = c) > 0:

Pr(M = m) = Pr(M = m|C = c)

 C and M are independent

Aussois, Mar. 18 2019 Provable Security in PKC Damien Vergnaud 17 / 64

A perfectly symmetric secure scheme: one-time pad

Description

` 2 N a parameter. M = K = {0, 1}`.

Let � denote component-wise XOR.

Vernam’s cipher: Enc(K ,m) = m � K and Dec(K , c) = c � K .

One-time pad is perfectly secret!

Pr(C = c|M = m) = Pr(K �M = c|M = m)

= Pr(K = m � c|M = m) = 2�`

Each key cannot be used more than once!

Enc(K ,m0)� Enc(K ,m1) = (m0 � K )� (m1 � K ) = m0 �m1

One time-pad is optimal in the class of perfectly secret schemes
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Security Notions

Depending on the context in which a given cryptosystem is used, one may
formally defines a security notion for this system,

by telling what goal an adversary would attempt to reach,

and what means or information are made available to her (the model).

A security notion (or level) is entirely defined by pairing an adversarial goal with
an adversarial model.

Examples: OW-PCA, IND-CCA2, NM-CCA2.
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History of Security Goals

it shouldn’t be feasible to compute the secret key sk from the public key pk
(unbreakability or UBK). Implicitely appeared with public-key crypto.

it shouldn’t be feasible to invert the encryption function over any ciphertext
under any given key pk (one-wayness or OW). Di�e and Hellman, late 70’s.

it shouldn’t be feasible to recover a single bit of information about a plaintext
given its encryption under any given key pk (semantic security or SEM).
Goldwasser and Micali, 1982.

it shouldn’t be feasible to distinguish pairs of ciphertexts based on the
message they encrypt (indistinguishability or IND).
Goldwasser and Micali, 1982.

it shouldn’t be feasible to transform some ciphertext into another ciphertext
such that plaintext are meaningfully related (non-malleability or NM).
Dolev, Dwork and Naor, 1991.
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History of Adversarial Models

Several types of computational resources an adversary has access to have been
considered:

chosen-plaintext attacks (CPA), unavoidable scenario.

non-adaptive chosen-ciphertext attacks (CCA1), wherein the adversary
gets, in addition, access to a decryption oracle before being given the
challenge ciphertext.
Naor and Yung, 1990.

adaptive chosen-ciphertext attacks (CCA2) as a scenario in which the
adversary queries the decryption oracle before and after being challenged; her
only restriction here is that she may not feed the oracle with the challenge
ciphertext itself.
Racko↵ and Simon, 1991.
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Semantic Security
Semantic security for E = (G ,E ,D), against an adversary A and attack
atk 2 {cpa, cca1, cca2} is measured using the following game:

Experiment Exptsem-atk-b
E (A,):

(pk, skK) G(1);
(M, s) AD0(·)(select, pk);

x0
R M; x1

R M;
y  Epk(xb);
(f ,↵) AD1(·)(predict, y , s);
if f (xb) = ↵ then return 1;
else return 0;

M : P ! [0, 1] is a distribution over the plaintext space
f : P ! ran f is a function on plaintexts, with ↵ 2 ran f .
The oracles D0 and D1 are defined according to atk :

atk D0(x) D1(x)

CPA ? ?

CCA1 Dsk(x) ?

CCA2 Dsk(x) Dsk(x) for x 6= y
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Indistinguishability
Indistinguishability for E = (G ,E ,D), against an adversary A and attack
atk 2 {cpa, cca1, cca2} is measured using the following game:

Experiment Exptind-atk-bE (A,):
(pk, skK) G(1);
(x0, x1, s) AD0(·)(find, pk);
if |x0| 6= |x1| then return 0;
y  Epk(xb);
b
0  AD1(·)(guess, y , s);

return b
0;

In the first stage, the adversary has to choose two plaintexts.
One is encrypted by the challenger and the ciphertext given to the adversary.
The adversary must decide which plaintext was encrypted.
The oracles D0 and D1 are defined according to atk :

atk D0(x) D1(x)

CPA ? ?

CCA1 Dsk(x) ?

CCA2 Dsk(x) Dsk(x) for x 6= y
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Advantage and insecurity

For a public-key encryption scheme E , under attack atk 2 {cpa, cca1, cca2} by an
adversary A, we define A’s advantage by:

Advind�atkE(A) = Pr[Exptind-atk-1E (A) = 1]� Pr[Exptind-atk-0E (A) = 1];

Advsem�atkE(A) = Pr[Exptsem-atk-1
E (A) = 1]� Pr[Exptsem-atk-0

E (A) = 1].

We define insecurities for goal 2 {ind, sem} under chosen plaintext attacks, and
chosen ciphertext attacks cca 2 {cca1, cca2} by:

InSecgoal-cpa(E ; t) = maxA Advgoal�cpaE(A);

InSecgoal-cca(E ; t, qD) = maxA Advgoal�ccaE(A).

where the maxima are taken over adversaries A which run in time t and issue qD
decryption queries.
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Relations Among Security Notions

CPA CCA1 CCA2

UBK

OW

IND

NM
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Chosen-Ciphertext Security

Because IND-CCA2 ⌘ NM-CCA2 is the upper security level, it is desirable to
prove security with respect to this notion. It is also denoted by IND-CCA and
called chosen ciphertext security.

Formally, an asymmetric encryption scheme is said to be (⌧, ")-IND-CCA if
for any adversary A = (A1,A2) with running time upper-bounded by ⌧ ,

AdvindE(A) = 2⇥ Pr
b
R {0,1}

u
R U

"
(sk , pk) K(1), (m0,m1,�) A1(pk)

c  Epk(mb, u) : A2(c ,�) = b

#
�1 < " ,

where the probability is taken over the random choices of A.

The two plaintexts m0 and m1 chosen by the adversary have to be of
identical length.

Access to a decryption oracle is allowed throughout the game.
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IND-CCA: Playing the Game

A1

A2
Decryption

Random Encryption

Key Generator

pk

m  , m

cb

b'==b?

0        1

(find stage)

(guess stage)

reject only cb
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The ElGamal public-key encryption scheme

ElGamal’s encryption scheme is based on Di�e-Hellman. Let G = hgi be a
cyclic group of prime order q.

Plaintexts and ciphertexts in the scheme are elements of G .

The scheme E-ElGamal = (G -ElGamal ,E -ElGamal ,D-ElGamal) is defined by:

G -ElGamal :

↵
R

 {0, 1, . . . , q � 1};
return (pk = g↵, sk = ↵);

E -ElGamalpk(m):

�
R

 {0, 1, . . . , q � 1};
return (g� ,m · pk�);

D-ElGamal sk(y):
(B ,C ) y ;
m B�skC ;
return m;

This scheme is secure in the IND-CPA sense if the Decisional Di�e-
Hellman problem is hard in G .
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Security proof for ElGamal

Suppose A is an adversary attacking the ElGamal scheme in the IND-CPA sense.

We construct from it an algorithm D which solves the DDH problem
(i.e., given a triple A = g↵,B = g� ,C , decides whether C = g↵�):

Algorithm D(A,B ,C ):
(m0,m1, s) A(find,A);

b
R

 {0, 1};
y  (B ,mb · C );
b0  A(guess, y , s);
if b = b0 then return 1;
else return 0;

Aussois, Mar. 18 2019 Provable Security in PKC Damien Vergnaud 29 / 64

Security proof for ElGamal (cont.)

Let ↵ and � be the discrete logs of A and B .

If C = g↵� , then D’s success probability is equal to A’s probability of
guessing the hidden bit correctly, which is

Advind�cpaE-ElGamalG (A)

2
+

1

2
.

If C is random, then mbC is uniformly distributed in G , and independent of
b, so A answers correctly with probability exactly 1

2 .

Hence, AdvddhG(D) = Advind�cpaE-ElGamal(A)/2, and

InSecind-cpa(E-ElGamalG ; t)  2 · InSecddh(G ; t).
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Notes about ElGamal

We needed the Decisional Di�e-Hellman assumption to prove the
security. This is a strong assumption. Still, a proof based on DDH is a lot
better than nothing.

We really do need the Decisional Di�e-Hellman assumption.

An adversary with a DDH algorithm can submit m0 2R G and m1 = 1; it
receives a ciphertext (B ,C ), and returns 1 if (A,B ,C ) looks like a
Di�e-Hellman triple, or 0 if it looks random.

The plaintexts must be elements of the cyclic group G.

For example, if G is a subgroup of F⇤
p
, it’s not safe to allow elements outside

the subgroup as plaintexts: an adversary can compare orders of ciphertext
elements to break the semantic security of the scheme.

ElGamal is malleable. We can decrypt a challenge ciphertext y = (g� ,A�x)
by choosing a random � and requesting a decryption of y 0 = (g�� ,A��x�).
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Random Oracle Model

idealized model introduced by Bellare and Rogaway in 1993

considers cryptographic constructions that make use of a function H

can be accessed in a black-box way
answers consistently for values x already queried
for new values x, choose uniformly at random in the range as answer

Do they exist?
 NO! But let us assume cryptographic hash functions behave
“approximately” like ROs
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Random Oracle Model

Why ROM?
allows e�cient constructions of cryptographic primitives with somewhat
“provable security” guarantees
E�cient signature and encryption schemes (Schnorr signatures, . . . )

How are ROs used in security proofs?
Sample a random H at the beginning of an experiment
Output of ROM fully hidden unless queried, i.e., H(m, r) for r a large random
string
Typically we assume that the reduction can “program” the random oracle
i.e., can choose the answers to the oracle calls

Criticism of the ROM

only a “heuristic” argument for security instead of a real proof
There are schemes that can be shown secure in the ROM, but insecure when
ROM is replaced with any real hash function
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The Hash ElGamal public-key encryption scheme

Let G = hgi be a cyclic group of order q.
Let H : G! {0, 1}` be an hash function.

Plaintexts are elements of {0, 1}`.

G -H-ElGamal :

↵
R

 {0, 1, . . . , q � 1};
return (pk = g↵, sk = ↵);

E -H-ElGamalpk(m):

�
R

 {0, 1, . . . , q � 1};
return (g� ,m �H(pk�));

D-H-ElGamal sk(y):
(B ,C ) y ;
m H(Bsk)� C ;
return x ;

This scheme is secure (in the Random Oracle Model) in the IND-CPA
sense if the Computational Di�e-Hellman problem is hard in G.
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The Hash ElGamal public-key encryption scheme

Let G = hgi be a cyclic group of order q.
Let H : G ! {0, 1}` be an hash function.
Let G : G ⇥ {0, 1}` ! {0, 1}k be an hash function.

Plaintexts are elements of {0, 1}`.

G -H+-ElGamal :

↵
R

 {0, 1, . . . , q � 1};
return (a = g↵,↵);

E -H+-ElGamalpk(x):

�
R

 {0, 1, . . . , q � 1};
return (g� , x �H(pk�),

G(x , pk�));

D-H+-ElGamal sk(y):
(B , c , d) y ;
x  H(Bsk)� c ;
return x if d = G(x ,Bsk);
return ? otherwise.

This scheme is IND-CCA2 (in the Random Oracle Model) if the
(strong) Computational DH problem is hard in G.

Aussois, Mar. 18 2019 Provable Security in PKC Damien Vergnaud 35 / 64

Digital Signatures

A very important public key primitive is the digital signature.

The idea is
Message + Alice’s Private Key = Signature
Message + Signature + Alice’s Public Key = YES/NO

Alice can sign a message using her private key.

Anyone can verify Alice’s signature, since everyone can obtain her public key.

the verifier is convinced that only Alice could have produced the signature
only Alice knows her private key!
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Digital signature schemes

Digital signatures: Alice owns two “keys”
a public key known by everybody (including Bob)
a secret key known by Alice only

Alice Bob

skA

pk
A

??
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Digital Signatures : Services

The verification algorithm is used to determine whether or not the signature
is properly constructed.

the verifier has guarantee of
message integrity and
message origin.

also provide non-repudiation - not provided by MACs.

Most important cryptographic primitive!
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Security Notions

Depending on the context in which a given cryptosystem is used, one may
formally define a security notion for this system,

by telling what goal an adversary would attempt to reach,

and what means or information are made available to her (the attack
model).

A security notion (or level) is entirely defined by pairing an adversarial goal with
an adversarial model.

Examples: UB-KMA, UUF-KOA, EUF-SOCMA, EUF-CMA.
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Signature Schemes

An digital signature scheme is a triple of algorithms (G,S,V) where

K is a probabilistic key generation algorithm which returns random pairs of
secret and verification keys (sk , vk) depending on the security parameter ,

S is a (probabilistic) signature algorithm which takes on input a signing key
sk and a message m 2M, runs on a random tape u 2 U and returns s 2 S ,

V is a deterministic verification algorithm which takes on input a
verification key vk , a message m and s 2 S and outputs a bit in {0, 1}.
If Vvk (m, s) =1, then s is a signature on m for vk .

If (sk , vk) K, then Vvk (m,Ssk(m, u)) = 1 for all (m, u) 2M⇥ U .
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Security Goals

[Unbreakability] the attacker recovers the secret key sk from the public key vk
(or an equivalent key if any). This goal is denoted UB. Implicitly
appeared with public-key cryptography.

[Universal Unforgeability] the attacker, without necessarily having recovered sk ,
can produce a valid signature of any message in the message space.
Noted UUF.

[Existential Unforgeability] the attacker creates a message and a valid signature
of it (likely not of his choosing). Denoted EUF.
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Adversarial Models

Key-Only Attacks (KOA), unavoidable scenario.

Known Message Attacks (KMA) where an adversary has access to
signatures for a set of known messages.

Chosen-Message Attacks (CMA) the adversary is allowed to use the signer
as an oracle (full access), and may request the signature of any message of
his choice
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Chosen-Message Security

Goldwasser, Micali, Rivest (1988)
A Digital Signature Scheme Secure Against Adaptive Chosen-Message Attacks.
SIAM J. Comput. 17(2) pp. 281-308.

Formally, an signature scheme is said to be (q, ⌧, ")-secure if for any adversary A

with running time upper-bounded by ⌧ ,

SuccEUF�CMA(A) = Pr

2

64
(sk , vk) K(1k),

(m⇤, s⇤) A
S(sk,·)(pk),

V(vk ,m⇤, s⇤) = 1

3

75 < " ,

where the probability is taken over all random choices.

The notation A
S(sk,·) means that the adversary has access to a signing oracle

throughout the game, but at most q times.

The message m⇤ output by A was never requested to the signing oracle. . .
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EUF-CMA: Playing the Game

A S(sk,  ).

Signing Oracle

 m , s **

pk

Key Generator

G(1 )k

1?

V(pk,  ).Verification

sk
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Lamport signatures

L. Lamport
Constructing digital signatures from a one-way function
Technical Report SRI-CSL-98, SRI International Computer Science Laboratory,
Oct. 1979.

a Lamport signature or Lamport one-time signature scheme is a method
for constructing e�cient digital signatures.

Lamport signatures can be built from any cryptographically secure one-way
function; usually a cryptographic hash function is used.

Unfortunately each Lamport key can only be used to sign a single message.

However, we will see how a single key could be used for many messages.
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How to sign one bit just once ?

M = {0, 1}

Key generation:
Consider f : X �! Y a one-way function.
e.g.

f : Zq �! G
x 7�! f (x) = g

x
r

Select two random elements x0, x1 2 X .

Compute their images yi = f (xi ) for i 2 {0, 1}.
Verification key vk = (y0, y1) which can be published.
Signing key sk = (x0, x1) which needs to be kept secret

Signature: if Alice wants to sign a bit b, she does the following:
Use her signing key (x0, x1) to send the signature s = xb to Bob.

Verification: to check the validity of s on b, Bob does the following:
Obtain Alice’s authentic verification key (y0, y1).
Check whether f (s) = yb.
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How to sign k bits just once ?

M = {0, 1}k

Key generation:
Generate f : X �! a one-way function.

Select 2k random elements x0,1, x1,1, . . . , x0,k , x1,k 2 X .

Compute their images yi,j = f (xi,j) for i 2 {0, 1} and j 2 [[1, k]].

Verification key vk = (y0,1, y1,1, . . . , y0,k , y1,k) which can be published.
Signing key sk = (x0,1, x1,1, . . . , x0,k , x1,k) which needs to be kept secret

Signature: if Alice wants to sign m = m1 . . .mk , she does the following:
Use her signing key (x0,1, x1,1, . . . , x0,k , x1,k) to send the signature
s = (xm1,1, xm1,2, . . . , xmk ,k) to Bob.

Verification: to check the validity of s = (s1, . . . , sk) on m, Bob does the
following:

Obtain Alice’s authentic verification key (y0,1, y1,1, . . . , y0,k , y1,k).
Check whether f (si ) = ymb,i for all i 2 [[1, k]].
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How to sign k bits just once ?

Theorem
If f is (⌧, ")-one way then Lamport’s signature scheme (for k-bit messages) is
(1, ⌧ 0, 2k · ")-EUF-CMA secure, with ⌧ 0 = ⌧ + (2k � 1)TEval.

In other words: If there is an Adversary A that chooses
a message m 2 {0, 1}k for Alice to legitimately authenticate
forges a message m

0 6= m with probability at least "

Then there is an Adversary B that can break the one-wayness of the function
f with probability at least "/2k operates in time roughly the same as A
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How to sign k bits just once ?

Proof. B gets as input the description of f and y?
2 Y .

B picks as input an index (i?, j?) 2 {0, 1}⇥ [[1, k]]

B selects 2k � 1 random elements x0,1, . . . , [xi?,j? , . . . , x1,k 2 X .

B computes their images yi,j = f (xi,j) = Eval(xi,j) for
(i , j) 2 {0, 1}⇥ [[1, k]] \ {(i?, j?)}.

B sets yi?,j? = y

B executes A on the public key (y0,1, y1,1, . . . , y0,k , y1,k)

At some point A query one message m = m1 . . .mk to the signature oracle
If mj? = i

? then B aborts the simulation (probability 1/2),
otherwise B outputs a valid signature on m thanks to its knowledge of
x0,1, . . . , [xi?,j? , . . . , x1,k .

Eventually, A outputs a signature s 0 on a message m0 6= m and B outputs s 0
j?
.

The message m0 di↵ers from m in at least one position. If it is the j?-th
position (probability 1/k) and if the signature is valid (probability ") we have
f (s 0

j?
) = yi?,j? = y .
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How to sign k bits just once ?

Lamport’s scheme is EUF-CMA secure assuming only the
one-wayness of f .

The signature generation is very e�cient.

For (generic) groups of of prime order q of n-bits, solving the
discrete logarithm problem requires 2n/2 operations.

For a 128-bit security level, we need to have a group order q of
(at least) 256 bits and for an ideal G (an elliptic curve?),
elements in G can be represented with 256 bits.
The verification key is made of 2562 = 65536 bits and its
generation requires 256 exponentiation in G.

The signature is made of k elements from Zq. The signature
length is at least 256 · k bits.

Can sign only one message
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Lamport’s signatures: variants

Short private key. Instead of creating and storing all the random numbers
of the private key a single key of su�cient size can be stored.

The single key can then be used as the seed for a cryptographically secure
pseudorandom number generator to create all the random numbers in the
private key when needed.

Short public key A Lamport signature can be combined with a hash list,
making it possible to only publish a single hash instead of all the hashes in
the public key.

Hashing the message.
Unlike some other signature schemes the Lamport signature scheme does not
require that the message m is hashed before it is signed.
A system for signing long messages can use a collision resistant hash function
h and sign h(m) instead of m.
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Lamport’s signatures: several messages
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Groth’s one-time signatures

Groth (2006)
Simulation-sound NIZK proofs for a practical language and constant size group
signatures.
Advances in Cryptology - Asiacrypt 2006: pp. 444–459

Key generation: generate vk = (X = g x ,Y = g y ,Z = g z) where x , y
$
 Z⇤

p

Sign: to sign m 2 Z⇤
p
, select r

$
 Z⇤

p
, compute

s = (1�mx � yr)/z 2 Z⇤
p
, and output � = (r , s).

Verify: given � 2 (Z⇤
p
)2, check

XmY rZ s = g .
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Groth’s one-time signatures

Theorem
If the discrete logarithm assumption holds in G then Groth’s signature scheme is
one-time EUF-CMA secure.

Proof idea: given a DL instance (g , h) 2 G, one sets X = g a1hb1 , Y = g a2hb2 ,

Z = g a3 where a, b, c
$
 Z⇤

p
. On signature query on m, one compute

r = �mb1/b2 mod p and s = (1�ma1 � r2)/a3 mod p.

Thanks to the adversary’s forgery, one can retrieve the discrete logarithm of h in
base g by solving a linear system.
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Graph isomorphism

In graph theory, an isomorphism of graphs G and H is a bijection between
the vertex sets of G and H

f : V (G ) �! V (H)

such that any two vertices u and v of G are adjacent in G if and only if f (u)
and f (v) are adjacent in H.

If an isomorphism exists between two graphs, then the graphs are called
isomorphic.

The computational problem of determining whether two finite graphs are
isomorphic is referred to as the graph isomorphism problem.

The graph isomorphism problem is a curiosity in computational complexity
theory: not known to be in P nor NP-complete.
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Graph isomorphism
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Graph isomorphism
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Zero-knowledge interactive proof

a zero-knowledge proof or zero-knowledge protocol is an interactive
method for one party to prove to another that a (usually mathematical)
statement is true, without revealing anything other than the veracity of the
statement.

A zero-knowledge proof must satisfy three properties:

1 Completeness: if the statement is true, the honest verifier (that is, one
following the protocol properly) will be convinced of this fact by an honest
prover.

2 Soundness: if the statement is false, no cheating prover can convince the
honest verifier that it is true, except with some small probability.

3 Zero-knowledge: if the statement is true, no cheating verifier learns anything
other than this fact.

The first two of these are properties of more general interactive proof
systems. The third is what makes the proof zero-knowledge.
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Zero-knowledge interactive proof for Graph Isomorphism

Input: Two graphs G0 and G1 each having vertex set {1, . . . , n}.
Alice knows � 2 Sn an isomorphism from G0 to G1

Repeat the following n times
1 Alice chooses a random permutation ⇡ 2 Sn,

2 She computes H to be the image of G0 under ⇡ and sends H to Bob,

3 Bob chooses randomly b 2 {0, 1} and sends it to Alice,

4 Alice sends ⇢ = ⇡ � �b to Bob,

5 Bob checks if H is the image of Gb under ⇢
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Schnorr’s ID Protocol (1989)

Let G = hgi be a group of prime order q

Prover P proves to verifier V that he knows the discrete log x of a public group
element y = g x . It is a 3-move protocol.

P V

x
$ Zq

y=g
x

y

k
$ Zq

r=g
k

r

c
$ Zqc

s=k+cx mod q s

g
s ·y�c ?

=r

Scenario

P sends r = gk where k
$
 Zq

V sends c
$
 Zq

P sends s = k + cx mod q
V checks whether g s

· y�c = r
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The Fiat-Shamir heuristic

Fiat, Shamir (1986)
How to Prove Yourself: Practical Solutions to Identification and Signature Problems.
Advances in Cryptology - Crypto’86, Lect. Notes Comput. Science 263, pp. 186-194.

In such a 3-pass identification scheme, the messages are called commitment,
challenge and response. The challenge is randomly chosen by V .

Fiat-Shamir Transform: replace the challenge by a hash value taken on scheme
parameters and t, thereby removing V . This transforms the protocol by making it
non-interactive.

The intuition is that any ”su�ciently random” hash function should preserve the
security of the protocol.

(Many applications  see Damien’s lectures / Luca’s lectures)
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Schnorr Signatures (via the Fiat-Shamir Transform)

Introduce a hash function H : {0, 1}? 7! Zq

Schnorr’s signature scheme §igmaH is a tuple of probabilistic algorithms
§igmaH = (Gen,Sign,Ver) defined as follows.

P V

x
$ Zq

y=g
x

y

k
$ Zq

r=g
k

r

H

m

c

s=k+cx mod q

�=(s,c) H(m,gs ·y�c) ?
=c

Gen

Sign

Ver

Signing and Verifying
Sign

P computes r = gk where k
$
 Zq

P computes c = H (m, r)
P computes s = k + cx mod q
P sends � = (s, c)

Ver

V checks whether H (m, g s
· y�c) = c
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Security of Schnorr Signatures - Key Only Attacks

Theorem
If there exist a (0, ⌧, ")-EUF-CMA adversary in the ROM (with qH queries to the
RO) against Schnorr’s signature scheme (in G), then the discrete logarithm in G
can be solved in expected time O(⌧ · qH/").

Proof Intuition

run the adversary A several times in related executions

the process “forks” at a certain point (modification of the RO)

hope for two executions of A with forgery on the same message queried to
the RO (but with di↵erent hash values)
 extract the discrete logarithm
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Security of Schnorr Signatures - Chosen Message Attacks

Theorem
If there exist a (qS , ⌧, ")-EUF-CMA adversary in the ROM (with qH queries to the
RO) against Schnorr’s signature scheme (in G), then the discrete logarithm in G
can be solved in expected time O(⌧ · qH/").

The previous result can be adapted readily for an EF-CMA adversary.

In order to answer signing queries, one simply uses the simulator of the
zero-knowledge proof (r , h, s), and we set H(m, r) := h. The random oracle
programming may fail, but with negligible probability.
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