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1. Learning With Errors [Reg05]

The LWE problem: solve a linear system
b0
b1
...

bm−1

 ≈


a10 a11 . . . a1,n−1
a20 a21 . . . a2,n−1

...
...

. . .
...

am0 am1 . . . am,n−1

 ·


s0
s1
...

sn−1


over a finite field Fp for a secret (s0, s1, . . . , sn−1) ∈ Fn

p where

I each equation is perturbed by a “small” error, i.e.

bi = ai0s0 + ai1s1 + · · ·+ ai,n−1sn−1 + ei ,

I the aij ∈ Fp are chosen uniformly at random,

I m > n.
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1. Learning With Errors [Reg05]
The errors ei are sampled independently from a discretized
Gaussian with standard deviation σ &

√
n:

0
√

n−
√

n
Fp

When viewed jointly, the error vector e0
...

em−1


is sampled from a spherical Gaussian.
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1. Learning With Errors [Reg05]
Known attacks for q = poly(n):

I Trial and error:
2O(n log n) time and O(n) samples.

I A. Blum, A. Kalai, H. Wasserman ‘03:
2O(n) time and 2O(n) samples.

I S. Arora, R. Ge ‘11:
2O(σ2 log n) time and 2O(σ2 log n) samples.

Idea: if all errors (almost) certainly lie in {−T , . . . ,T}, then

T∏
j=−T

(
ai,0s0 + ai,1s1 + · · ·+ ai,n−1sn−1 − bi − j

)
= 0.

View as linear system of equations in ≈ n2T monomials.
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1. Learning With Errors [Reg05]

LWE is tightly related to classical lattice problems.

I Can be thought of as an instance of BDD inside the
lattice

(pZ)m

⊂

{w ∈ Zm | ∃s ∈ Zn : w ≡ A·s mod p}⊂

Zm.

Rm

b ≡ A · s + e

I Proven to be at least as hard as quantum SIVP.
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1. Learning With Errors (LWE)

Features:
I hardness reduction from famous lattice problems,
I versatile building block for cryptography, enabling exciting

applications (post-quantum crypto, FHE, . . . )

Drawback: key size.
I To hide the secret one needs an entire linear system:

b0
b1
...

bm−1

 ≈


a10 a11 . . . a1,n−1
a20 a21 . . . a2,n−1

...
...

. . .
...

am0 am1 . . . am,n−1

 ·


s0
s1
...

sn−1

.
↑ ↑ ↑

m log p mn log p n log p
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2. Ring-based LWE?
Idea:
I Identify key space

Fn
p with

Z[x ]

(p, f (x))

for some monic deg n polynomial f (x) ∈ Z[x ], by viewing

(s0, s1, . . . , sn−1) as s0 + s1x + s2x2 + · · ·+ sn−1xn−1.

I Replace every block of n eqns by a block of the form
b0
b1
...

bn−1

 ≈ Aa·


s0
s1
...

sn−1


with Aa the matrix of
multiplication by some random
a(x) = a0 + a1x + · · ·+ an−1xn−1.

I Store a(x) rather than Aa: saves factor n.
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2. Ring-based LWE?

Example:

I if f (x) = xn − 1, then Aa is a circulant matrix
a0 an−1 . . . a2 a1
a1 a0 . . . a3 a2
a2 a1 . . . a4 a3
...

...
. . .

...
...

an−1 an−2 . . . a1 a0


of which it suffices to store the first column.

I Bad example, because of . . .
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3. Ring-based LWE?
Potential threat:

smallness preserving homomorphisms to smaller rings.

I Suppose e.g. that f (1) ≡ 0 mod p, then

Rp :=
Z[x ]

(p, f (x))
→ Fp : r(x) 7→ r(1) = r0 + r1 + · · ·+ rn−1,

is a well-defined ring homomorphism.

I Our ring-based LWE samples

b(x) = a(x) · s(x) + e(x)

evaluate to
b(1) = a(1) · s(1) + e(1).

I For each guess for s(1) ∈ Fp, analyze distribution of e(1).
I Non-uniformity might reveal s(1).
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3. Ring-based LWE?

A lattice point of view:

Rm
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3. Ring-based LWE?
Safety measure: restrict to irreducible f (x) ∈ Z[x ].
I Rules out examples like xn − 1.
I Resulting problem is often called Poly-LWE [SSTX09].
I Notice: our ‘parent ring’

R =
Z[x ]

(f (x))

is an order in the number field K = Q[x ]/(f (x)).

Does this really solve our problem?
I No! E.g., f (x) = xn + (p − 1) suffers from same problem.
I Possible to make examples where K/Q is Galois [EHL14].
 s(1) is enough to reconstruct s completely!

Ring-LWE: choose more ‘canonical’ error distribution [LPR12].
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4. Ring-LWE [LPR12]
Direct ring-based analogue of LWE-sample would read

b0
b1
...

bn−1

 = Aa ·


s0
s1
...

sn−1

+ Af ′(x) · B−1·


e0
e1
...

en−1


with the ei sampled independently from

N(0, σ)

for some fixed small σ = σ(n).

This is not Ring-LWE!
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4. Ring-LWE [LPR12]
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
where
I B is the canonical embedding matrix,
I Af ′(x) compensates for the fact that one

actually picks secrets from the dual.

At least as hard as quantum Ideal-SIVP.

Note:
I factor Af ′(x) · B−1 might skew the error distribution,
I but also scales it!
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4. Ring-LWE [LPR12]
. . . but also scales it!

b0
b1
...

bn−1

 = Aa ·


s0
s1
...

sn−1

+ Af ′(x) · B−1 ·


e0
e1
...

en−1


Indeed, one has

I det Af ′(x) = ∆ with

∆ = |disc f (x)| , ← typically huge

I det B−1 = 1/
√

∆.

So “on average”, each ei is scaled up by
√

∆
1/n

. . .
I . . . but remember: skewness.
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4. Ring-LWE [LPR12]
Main example: 2-power cyclotomics f (x) = xn + 1 with n = 2k .

b0
b1
...

bn−1

 = Aa ·


s0
s1
...

sn−1

+ Af ′(x) · B−1 ·


e0
e1
...

en−1


I f ′(x) = nxn−1 = n × unit, so

Af ′(x) = n × orthogonal matrix,

I all singular values of B are
√

n, so

B−1 =
1√
n
× orthogonal matrix,

Therefore Ring-LWE = Poly-LWE in this case.
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5. A wrong instantiation
Recall: successful attack on Ring-LWE

⇓
quantum solution to SIVP in ideal lattices.

[ELOS15] announced successful evaluation-at-1 attack
 but for convenience picked non-dual secrets:

b0
b1
...

bn−1

 = Aa ·


s0
s1
...

sn−1

+ Af ′(x)· B−1 ·


e0
e1
...

en−1

 .

But:
I det B−1 = 1/

√
∆, so the errors get squeezed.

I To compensate, they scale up the errors by a factor
√

∆
1/n

.
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5. A wrong instantiation

Issue: 
b0
b1
...

bn−1

 = Aa ·


s0
s1
...

sn−1

+
√

∆
1/n

B−1 ·


e0
e1
...

en−1

 .

I The factor
√

∆
1/n

compensates for B−1 only “on average”.

I In some coordinates B−1 could scale down much more.

Compensation factor is insufficient
 merely rounding yields exact equations in the secret!
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5. A wrong instantiation

I Concrete example: f (x) = x256 + 8190, p = 8191.
I Standard deviations even form a geometric series!

Error distribution in each coordinate (experimental):

3σ

σ

µ

0 20 40 60 80 100 120 140 160 180 200 220 240
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coordinate index
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6. Module-LWE [LS15]

Recall: LWE is about solving a noisy system of linear equations
b0
b1
...

bm−1

 =


a10 a11 . . . a1,n−1
a20 a21 . . . a2,n−1

...
...

. . .
...

am0 am1 . . . am,n−1

 ·


s0
s1
...

sn−1

+


e0
e1
...

em−1


in Fn

p. =
A

In Ring-LWE we replace A by a matrix of multiplication Aa with

a ∈ Rp =
Z[x ]

(p, f (x))
∼= Fn

p.
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6. Module-LWE [LS15]

Let n = ` · `′. Module-LWE is about solving a noisy system
b0
b1
...

bk−1

 =


a10 a11 . . . a1,`−1
a20 a21 . . . a2,`−1

...
...

. . .
...

ak0 ak1 . . . ak ,`−1

 ·


s0
s1
...

s`−1

+


e0
e1
...

ek−1


in R`

p,

where

Rp =
Z[x ]

(f (x))
, f (x) monic irreducible of degree `′,

and all ei are sampled as in Ring-LWE.

This fills A blockwise with matrices of multiplication.

At least as hard as quantum Module-SIVP.
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7. Variants of NTRU [HPS98], [CG05]
Matrix version of the NTRU problem:
I Consider two n × n matrices

A = (aij), B = (bij) ∈ Fn×n
p

with aij ,bij sampled randomly from a narrow distribution.
If det B = 0, start over.

I Compute
H = AB−1 ∈ Fn×n

p .

I Problem: given H, find small A,B ∈ Fn×n
p with H = AB−1.

Best-known version of the NTRU problem:
I Replace A,B by matrices of multiplication Aa,Bb for small

a,b ∈ Rp = Z[x ]/(f (x)), f (x) monic irr. of deg n.
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7. Variants of NTRU [HPS98], [CG05]

Module version of NTRU:
I Let n = `× `′. Consider two `× ` matrices

A = (aij), B = (bij) ∈ R`×`
p

with

aij ,bij ∈ Rp = Z[x ]/(f (x)), f (x) monic irr. of deg `′

sampled randomly from a narrow distribution.
If B not invertible, start over.

I Compute
H = AB−1 ∈ R`×`

p .

I Problem: given H, find small A,B ∈ R`×`
p with H = AB−1.
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7. Variants of NTRU [HPS98], [CG05]

Remark: if ` is small, e.g.,

H =
A
B

=

(
a11 a12
a21 a22

)
(

b11 b12
b21 b22

) ∈ R2×2
p

then taking determinants yields

det H =
det A
det B

=
a11a22 − a21a12

b11b22 − b21b12

which is an NTRU-instance in Rp; may suffice to recover A,B.
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8. Variants of SIS [Aj96], [LM06], [PR06], [LS15]
The SIS problem is about finding a small solution in Fm

p \ {0} to
a10 a11 . . . a1,m−1
a20 a21 . . . a2,m−1

...
...

. . .
...

an0 an1 . . . an,m−1

 ·


x0
x1
...

xm−1

 = 0

where n < m and the aij ∈ Fp are chosen uniformly at random.

One defines:
I Ring-SIS (assume m = kn):

I Find small xi ∈ Rp = Z[x ]/(f (x)) with deg f (x) = n such that(
a1 . . . ak

)
·
(
x1 . . . xk

)T
= 0

with ai ∈ Rp random.
I Module-SIS: similar (fill matrix with blocks)

Proven to be at least as hard as —/Ideal/Module-SIVP.
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...
...

. . .
...

an0 an1 . . . an,m−1

 ·


x0
x1
...

xm−1

 = 0

where n < m and the aij ∈ Fp are chosen uniformly at random.

One defines:
I Ring-SIS (assume m = kn):

I Find small xi ∈ Rp = Z[x ]/(f (x)) with deg f (x) = n such that(
a1 . . . ak

)
·
(
x1 . . . xk

)T
= 0

with ai ∈ Rp random.
I Module-SIS: similar (fill matrix with blocks)

Proven to be at least as hard as —/Ideal/Module-SIVP.
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9. Don’t push it
Reconsider Module-LWE, where one is to solve a noisy system

b0
b1
...

bk−1

 =


a10 a11 . . . a1,`−1
a20 a21 . . . a2,`−1

...
...

. . .
...

ak0 ak1 . . . ak ,`−1

 ·


s0
s1
...

s`−1

+


e0
e1
...

ek−1


over R`

p. =

A

What if we push it, identify key space

R`
p with

R[y ]

(p,g(y))

for some monic deg ` polynomial g(y) ∈ R[y ], by viewing

(s0,s1, . . . ,s`−1) as s0 + s1y + s2y2 + · · ·+ s`−1y `−1,

and replace A with Aa(y) for random a(y)?
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9. Don’t push it
Can be a bad idea:
I [PTP15] suggest to work with

f (x) = x`
′

+ 1, `′ = 2k ′
, g(y) = y ` + 1, ` = 2k ,

which amounts to working in the ring

Z[x , y ]

(p, x`′ + 1, y ` + 1)

and identifying

(s00, s01, . . . , s`′−1,`−1) ∈ Fn
p with

∑
0≤i≤`′
0≤j≤`

sijx iy j .

I Assume (wlog) that `′ ≥ `, then x`
′/` is a root of y ` + 1!
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9. Don’t push it
Can be a bad idea:
I So we have a smallness preserving homomorphism

Z[x , y ]

(p, x`′ + 1, y ` + 1)
→ Z[x ]

(p, x`′ + 1)
: s(x , y) 7→ s(x , x`

′/`)

and solving smaller-dim’l Ring-LWE reveals s(x , x`
′/`).

I By varying the roots x`
′/`, x3`′/`, x5`′/`, . . . we retrieve all of

s(x , y) through simple linear algebra.

In general:
I if the two ring structures are independent, then essentially

reduce to Ring-LWE,
I if the two ring structures are dependent, then suffer from

the above reduction.

Does not seem interesting track. . .
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9. Don’t push it
Example/remark: consider a Module-NTRU sample

H = Aa(y)A
−1
b(y) ∈ R2×2

p , R =
Z[x ]

(xn/2 + 1)

with matrices of multiplication by

a(y), b(y) ∈ R[y ]

(p, y2 − x)
=

Z[x , y ]

(p, xn/2 + 1, y2 − x)
∼=

Z[y ]

(p, yn + 1)
.

This becomes a standard Ring-LWE sample.

Interpretation of the determinant reduction:

det H =
det Aa(y)

det Ab(y)
=

N(a(y))

N(b(y))

 used in [ABD16] to attack overstretched NTRU.
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10. Polynomial ciphertext modulus
Return to ring-based LWE and take a step back. . .
We start with our parent ring R = Z[x ]/(f (x))

with f (x) monic of degree n.

Note: I Free Z-module with basis 1, x , . . . , xn−1.

I Smallness is defined at this level.
E.g., coefficients from spherical Gaussian.

Next we quotient out by a ciphertext modulus to end up in

Rp = Z[x ]/(p, f (x)) Rep(Rp) =
{ ∑

0≤i<n

aix i |0 ≤ ai < p
}

where: I small elt.’s are reductions mod p of small elt.’s of R
(easy to recognize when isolated),

I all computations are reduced into Rep(Rp)
(wrap around hard to recognize in expressions)
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10. Polynomial ciphertext modulus
What if we replace p by a polynomial modulus?

I Pick monic polynomial f (x) ∈ Z[x ] defining the parent ring:

R = Z[x ]/(f (x)).

I Choose error distribution to define smallness.

I Pick g(x) ∈ Z[x ] coprime with f (x) and assume that

(f (x),g(x)) = (a, r(x)) for a ∈ Z and monic r(x) ∈ Z[x ]

(true for about 60.8% of all polynomial pairs f (x) and g(x)).
This gives an easy set of representatives:

Rep(Rg(x)) =
{ ∑

0≤i<deg r(x)

aix i |0 ≤ ai < a
}
.

in which all results are to be reduced.

I Recognizing small elements seems ad hoc exercise.
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10. Polynomial ciphertext modulus
Example:

I Parent ring: R = Z[x ]/(f (x)) with f (x) = xn − 1.

I Smallness: samples from an extremely narrow Gaussian,
so that all coefficients are 0 with just a few ±1’s.

I Now quotient out by x − 2 to get ciphertext ring

Rx−2 =
Z[x ]

(xn − 1, x − 2)
=

Z[x ]

(2n − 1, x − 2)
∼=

Z
(2n − 1)

which comes with representatives

Rep(Rx−2) = {a ∈ Z |0 ≤ a < 2n − 1 }

I Easy to recognize small elements (Hamming weight)

I Note that Rx−2 is totally invulnerable to evaluation-at-1.

I Essentially the Mersenne based system from [AJPS17].
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11. A recipe for constructing hard problems
1. Select the parent ring R = Z[x ]/(f (x)).

R = Z (= Z[x ]/(x))

2. Select error distribution.
Gaussian

3. Select ciphertext modulus g(x) subject to constraints.
g(x) = p

4. Select the rank of the module.
rank n, so work in Rn

p

5. Select your hard problem family:
Module-LWE, Module-NTRU or Module-SIS.

LWE
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11. A recipe for constructing hard problems
1. Select the parent ring R = Z[x ]/(f (x)).

R = Z[x ]/(xn + 1) (n = 2k )

2. Select error distribution.
spherical Gaussian

3. Select ciphertext modulus g(x) subject to constraints.
g(x) = p

4. Select the rank of the module.
rank 1, so work in Rp

5. Select your hard problem family:
Module-LWE, Module-NTRU or Module-SIS.

Ring-LWE

Aussois, March 22, 2019 Structured variants of LWE 31/33



11. A recipe for constructing hard problems
1. Select the parent ring R = Z[x ]/(f (x)).

R = Z[x ]/(xq − x − 1)

2. Select error distribution.
coefficients uniform in {0,±1} with fixed weight

3. Select ciphertext modulus g(x) subject to constraints.
g(x) = p

4. Select the rank of the module.
rank 1, so work in Rp

5. Select your hard problem family:
Module-LWE, Module-NTRU or Module-SIS.

NTRU Prime
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11. A recipe for constructing hard problems
1. Select the parent ring R = Z[x ]/(f (x)).

R = Z[x ]/(xD − xD/2 − 1)

2. Select error distribution.
coefficients sampled from {0,±1}

3. Select ciphertext modulus g(x) subject to constraints.
g(x) = x − 2

4. Select the rank of the module.
small rank n ∈ {2,3,4}, so work in Rn

x−2

5. Select your hard problem family:
Module-LWE, Module-NTRU or Module-SIS.

Three Bears (I-MLWE)

Aussois, March 22, 2019 Structured variants of LWE 31/33



11. A recipe for constructing hard problems
1. Select the parent ring R = Z[x ]/(f (x)).

R = Z[x ]/(xn + 1) (n = 2k )

2. Select error distribution.
spherical binomial

3. Select ciphertext modulus g(x) subject to constraints.
g(x) = p

4. Select the rank of the module.
small rank n ∈ {2,3,4}, so work in Rn

p

5. Select your hard problem family:
Module-LWE, Module-NTRU or Module-SIS.

Kyber
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Questions?
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