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Cryptographic context

Don’t tell me you want yet another crypto introduction with Alice
and Bob?

Who has never heard about RSA ?

Who has never heard about Diffie-Hellman ?

Who has never seen an elliptic curve in the wild ?

Who has never clicked on the small lock in the https:// ?
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Hard problems

Public key crypto security relies on hard algorithmic problems.

Mainstream public key crypto
Integer factorization (RSA);
Discrete log problem (ElGamal enc, Schnorr sig):

in finite fields
in elliptic curves
in jacobians of genus 2 curves

Post-quantum crypto
Hard problems in Euclidean lattices
Hard problems in error correcting codes
Paths in (supersingular) isogeny graphs
Multivariate polynomial systems solving
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Where do we find DLP over finite fields?

Examples of current usage of DLP over Fp:
In VPNs (virtual private network).
The IKE protocol used internally relies on DLP.

In TLS (used for instance in https).
In order to get forward secrecy the session key is usually
computed with Diffie-Hellman.
DLP in prime fields is one choice among others.
Negociation between server and client.

In most (all ?) currently deployed E-Voting systems.
ElGamal encryption is used. Most of the times with prime
field. Sometimes with elliptic curves.
Examples: Helios, Belenios, Swiss Post / Scytl.
(note, in France, no incitation to publish the protocol)
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Definition of the problem

Context: a cyclic group G of order N. Let G = 〈g〉.

Assumptions:
there exists a fast algo for the group law in G ;
elements are represented with logN bits;
N is known (and maybe its factorization).

Def. The discrete logarithm problem (DLP) in G is: given any
element h, compute x such that

h = gx .
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Easy remarks

The result x makes sense only modulo N (because gN = 1).

There is a group isomorphism:

G ∼= Z/NZ,

one of the map is easy (binary exponentiation);
the other is the DLP.

The naive algorithm can solve the DLP in less then N group
operations.
=⇒ N must be large enough.
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Pohlig-Hellman reduction

Assume the factorization N =
∏
`ei

i is known.

For any j , raise g and h to the power N/`ej
j to obtain g ′ and h′.

Then x mod `ej
j is the discrete logarithm of h′ in the group of

order `ej
j generated by g ′.

By CRT, we have therefore reduced the original DLP to smaller
DLP in groups of prime powers orders.

Adding to this an Hensel trick, we obtained:

Theorem of Pohlig–Hellman
The DLP in G of order N =

∏
`ei

i can be reduced in polynomial
time to, for each i , solving ei DLP in subgroups of G of order `i .
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Baby-step giant-step algorithm

Start again from a DLP: find x s.t. h = gx .

Let us rewrite the (unknown) discrete logarithm x as

x = x0 + d
√
Nex1, where 0 ≤ x0, x1 < d

√
Ne.

First phase: compute all candidate values for hg−x0 ; store them in
an appropriate data structure.
Second phase: compute all the gx1d

√
Ne and check if there is a

match.
If yes: reconstruct x from x0 and x1.

Complexity: Õ(
√
N) in time and space.

Rem. In practice, there are low-memory and parallel variants of
this, (initially) due to Pollard.
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Summary of generic DL algorithms

Combining Pohlig–Hellman and Baby-step giant-step, we get:

Up to polynomial time factors, the DLP in any group
can be solved in

√
` operations, where ` is the largest

prime factor of the group order.

The converse is proven:

Theorem (Shoup): Lower bound on DLP
Let A be a probabilistic generic algorithm for solving the DLP. If A
succeeds with probability at least 1

2 on a group G , then A must
perform at least Ω(

√
#G) group operations in G .

But, of course, no group is generic, in the sense that the attacker
is free to use a DLP algorithm specific to the family used by the
designer.
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Physics: a bit becomes a qubit

Def. A qubit is a two-state quantum-mechanical system.

Traditionally, the 2 states are denoted with the Dirac notation:

|0〉 and |1〉

These are the basis-elements of a 2-dimensional C-vector space
(and in fact, a Hilbert space).

A qubit is therefore a linear combination (called superposition)

|z〉 = z0 |0〉+ z1 |1〉,

where z0 and z1 are in C such that |z0|2 + |z1|2 = 1.
Observation: If one observes |z〉, 0 (resp. 1) is obtained with
proba |z0|2 (resp. |z1|2).
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N qubits are more than N times one qubit
Two independent qubits:

|ϕa〉 = a0 |0〉+ a1 |1〉
|ϕb〉 = b0 |0〉+ b1 |1〉

Two entangled qubits:

|ϕab〉 = c00 |00〉+ c01 |01〉+ c10 |10〉+ c11 |11〉.

Effect of observing the first qubit:
In the first case, does not change the probability distribution
on the second qubit;
In the second case, potentially changes the probability
distribution on the second qubit.

Rem. The decoherence effect tends to transform entangled into
independent: diagonalize the probabilities (this is bad).
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Shor’s algorithm

[ There are many good descriptions available on the web ]

Shor’s algorithm can solve:
Integer factorization;
Discrete logarithm problem in any (explicit) group.

Features:
Polynomial complexity;
Heavily relies on the quantum Fourier transform:

With n qubits, perform a tranform of length 2n.
Uses a quadratic number of quantum gates.

Total number of gates is quadratic or cubic, depending how
we count.
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Shall we panic?
Yes, of course!

Due to possible applications in AI, many attempts to have
larger and larger prototypes;
NIST call for post-quantum cryptography.

But:
Shor’s algorithm requires n qubits to remain entangled for a
long time (n is maybe twice the bitsize of input).
This is difficult!
As long as there is no large quantum computer, mainstream
crypto will stay.
Changing a standard takes years or decades.
Look at the EMV protocol.

Personal guess: RSA-1024 will be first publicly factored with a
classical computer, not a quantum one.
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What are pairings in crypto?

A pairing in crypto is a map:

e : G1 × G2 −→ G3,

where G1, G2, G3 are cyclic group, and such that
e is efficiently computable;
e is bilinear;
e is non-degenerate.

And some problems must be (supposedly) hard:
Discrete logarithm problem in each of G1, G2, G3;
Inverting the pairing;
More specific problems.

Tons of advanced crypto algorithms can be built with this tool.

19/76



Pairings in practice

Only instance: Weil pairing on elliptic curves (and variants).

In that case G3 is a finite field of the form Fqk , where q is a prime
power and k is a small integer.

Raises the question of the difficulty of the DLP in such extension
fields.

Example of deployment: in a blockchain called ZCash, there is a
“shielded” mode, to make things anonymous. Many
zero-knowledge proofs have to be added. They are based on
pairings (keyword here is ZK-Snarks).

Typical targets for DLP in this context: Fp6 and Fp12 .
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Summary

The finite fields currently in use:
Prime fields Fp, with p of 2048 bits or more;
(but we still see way too small primes, with 768 or 1024 bits)
Extension fields Fp6 or Fp12 , with 2048 bits or more;
Due to improvements of the last few years, need to go for
larger sizes.

What about small characteristic? Broken!
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Generalities for DL in Fp

Let G be the multiplicative group of Fp, with p prime.

G is cyclic, of order p − 1.
With Pohlig-Hellman + BSGS, we consider a subgroup of large
prime order

` | p − 1.

Rem. ` is large enough so that any event with proba 1/` is
unlikely to occur.

Notation. g is a generator of the subgroup of order `, and h is the
target element in 〈g〉: we look for logg (h).
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A three-step strategy

Algorithm with three phases:
1. Collect relations between “small” elements;
2. With sparse linear algebra, deduce the logarithms of those;
3. Find a relation between the target h and small elements.

Rem. The first two phases depend only on Fp. If we want the logs
of many targets, these can be seen as a precomputation.

Terminology. The first phase is often called sieve.
Indeed, in most cases, a processus à la Erathostenes is used instead or in
combination of ECM.
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Smothness: definition

Smoothness
Def. An integer is B-smooth if all its prime factors are below B.

This is an important notion. We’ll discuss it at length later.

Some French mathematician use the word “friable” instead of smooth.
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Collecting relations
Fix a bound B.
Pick a random a, and compute ga in Fp.
Interpret ga as an integer in [1, p − 1], and test its B-smoothness.
If yes, we obtain a relation; let us collect many of them:

gai ≡
∏

q<B
qeq,i mod p.

Taking the logarithm in base g , we get:

ai ≡
∑
q<B

eq,i log q mod `.

In these, the only unknown part are the log q, for q < B: the
“small” elements!

Terminology. The set of “small” elements in these algorithms is often
called the Factor base.
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Let’s look at an example

Let p = 107, and consider DLP in the subgroup G of order ` = 53.
We can check that g = 3 is a generator.

Find ai such that gai is smooth:

g24 = 5× 7
g34 = 2× 5
g37 = 23 × 7

Taking logarithms, we get the linear system:

24 ≡ log(5) + log(7)
34 ≡ log(2) + log(5)
37 ≡ 3 log(2) + log(7)

Solve it mod 53 and get: log(2) = 25, log(5) = 9, log(7) = 15.
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Let’s look at an example (2)

We have p = 107, ` = 53, g = 3 and
log(2) = 25, log(5) = 9, log(7) = 15.

Assume we want the discrete logarithm of h = 19.
We look for an exponent a such that hga is smooth:

hg35 ≡ 5× 7

And taking the log:

log(h) ≡ log(5) + log(7)− 35.

We deduce log(h) = 42.
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Wait! Modulo ` or modulo p − 1 ?

The equation for a relation:

ai ≡
∑
q<B

eq,i log q mod `.

is written as if elements were all in the subgroup of order `.

But they are not! Each q < B has probability `/(p − 1) to be in
the subgroup 〈g〉.

Fact. The equation is still valid: raise the equation to (p − 1)/`,
take the logarithms, and divide out the result by (p − 1)/` (which
is assumed to be coprime to `).
Rem. Important drawback of the algorithm: even though we
work in a subgroup of F∗p, the collection of relations can not really
take advantage of that. Complexity will depend on p, not on `.
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Main difficulty: find smooth elements
Def. An integer is B-smooth if all its prime factors are below B.

Any guess of how likely it is to be smooth ?
What is the probability for a random 100-digit number to be
10-digit smooth ?

1% ?
10−5 ?
10−10 ?
10−50 ?

Same question with binary digits: probability for a random 100-bit
number to be 10-bit smooth ?

Key idea
The probability of being smooth depends (almost) only on the
quotient of the sizes.
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Smooth numbers

Smooth numbers play a crucial role in many modern algorithms
for factorization and discrete log, and more generally in algorithmic
number theory.

Def. We let ψ(x , y) be the number of y -smooth integers that are
less than or equal to x .

Theorem (Canfield – Erdős – Pomerance)
For any ε > 0. Uniformly in y ≥ (log x)1+ε, as x →∞,

ψ(x , y)/x = u−u(1+o(1)),

where u = log x/ log y .

In all our algorithms, y is much larger than this bound: it is usually
subexponential in log x .
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The L notation

Definition: subexponential L-function
Let N be the main parameter (usually the input of the algorithm).
For parameters α ∈ [0, 1] and c > 0, we define the
subexponential L-function by

LN(α, c) = exp
(
c(logN)α(log logN)1−α

)
.

Rem: α is the main parameter. α = 0 means polynomial-time;
α = 1 means purely exponential.
Rem: Sometimes, we drop the c parameter. Algorithms in this
lecture will have complexity in LN(1

2) or LN(1
3).

Crude approximation. The input N has n = log2 N bits,
LN(α) ≈ 2nα .
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Smooth integers: theorem with L

Easy corollary of CEP:

Smoothness probabilities with L notation
Let α, β, c, d , with 0 < β < α ≤ 1. The probability that a
number less than or equal to LN(α, c) is LN(β, d)-smooth is

LN

(
α− β, (α− β) cd

)−1+o(1)
.

Main application: α = 1, β = 1/2.
Then an integer less than N is LN(1/2)-smooth with probability in
1/LN(1/2).
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Solving the smoothness test problem

Def. The smoothness testing problem is: given N and B,
decide if N is B-smooth, i.e. if all its prime factor are less than B.

With trial division, can be solved in time quasi-linear in B.

The Elliptic Curve Method by Lenstra (1987), is better:

Complexity of ECM smoothness test (heuristic)
Given an integer N and a bound B, ECM returns either the
factorization of N or fails.
If N is B-smooth, the success probability is at least 1/2.
The running time is in (logN)O(1)LB(1/2,

√
2 + o(1)).

Rem. ECM as a factoring algorithm gives a worst-case complexity
of LN(1/2, 1 + o(1)).
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Analysis of the basic DLP algorithm

Recall the algorithm sketched on an example.

Let p be a prime, and g be an element of order `|p − 1 in Fp.
Let h ∈ 〈g〉. What is log(h) ?
Fix a smoothness bound B.
1. Collect relations.

Find many ai ’s such that gai is B-smooth.
Write the corresponding linear equations between log(q) for
primes q < B.

2. Linear algebra.
Solve the linear system modulo ` and deduce all the log(q).

3. Individual logarithm.
Find an element a such that hga is B-smooth.
Deduce log(h).
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Analysis of the basic DLP algorithm
Set B = Lp(1/2,

√
2/2) for smoothness bound.

Cost of finding a relation: by CEP, we get Lp(1/2,
√
2/2+ o(1)).

Cost of building the whole matrix: Lp(1/2,
√
2 + o(1)).

Cost of linear algebra: this is sparse, over F`, so again
Lp(1/2,

√
2 + o(1)).

Once we know the values of the log q’s, we can find a single
relation involving the target: hga ≡

∏
q<B(log q)eq , in time

Lp(1/2,
√
2/2 + o(1)).

Hence, the total time is

Lp(1/2,
√
2 + o(1)).
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Combining congruences for DL in F2n.
Representation of the finite field:

F2n ∼= F2[t]ϕ(t),

where ϕ(t) is irreducible of degree n.
Exactly the same algorithm, based on the smoothness of
polynomials:
Def. A polynomial in F2[t] is b-smooth if all its irreducible factors
have degree at most b.

Analogies with integers:
Size: logarithm ↔ degree;
Number of irreducible polynomials ≈ number of prime
numbers;
Test of smoothness can be done in polynomial-time (don’t
need complicated algorithms like ECM).

39/76



Analysis of the algorithm

The probability of smoothness is very similar to the integer case:

Theorem (Panario – Gourdon – Flajolet)
Let Nq(n,m) be the number of monic polynomials over Fq, of
degree n that are m-smooth.
Then we have

Nq(n,m)/qn = u−u(1+o(1)),

where u = n/m.

Setting a smoothness bound of b = log2 L2n (1/2,
√
2/2), we get a

total complexity of

L2n (1/2,
√
2 + o(1)).
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Which algorithm?

Fact: The basic combining of congruences in L(1/2) works for any
finite field.

Small characteristic: smoothness of polynomials.
Large characteristic: smoothness of integers.

L(1/2) complexity can be proven.

With the NFS/FFS algorithms, we can get an (heuristic) L(1/3)
algorithm for any finite field.
(Latest hard case, in Fpn when n ≈ log p, was solved in 2007).

With the quasi-polynomial techniques (2013-), we can go much
faster in small characteristic.
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Which algorithm?

DLP in Fq, where q = pn.
Quasi-polynomial algorithms. (≈ 2013)
Well suited for small characteristic (including 2).
Complexity can be as low as log(q)O(log log(q)).
Number Field Sieve (NFS). (early 90’s)
Well suited for large characteristic (including prime fields).
Can be adapted for medium characteristic.
Complexity in Lq(1/3).
Function Field Sieve (FFS). (90’s)
Still the best for a corner case of medium characteristic.
Complexity in Lq(1/3).

Sad truth: None of these complexities are fully proven.
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Best current known complexities (heuristic)

log n

log log p

p = LQ(1/3)

p = LQ(2/3)

FFS

NFS: LQ(1/3, (64/9)1/3)

NFS variants: LQ(1/3,≤ (96/9)1/3)

Quasi-Poly:
LQ(α + o(1))

when
p = LQ(α)

Q = pn

(Without multiple- or special- number field sieve)
44/76



Plan

The discrete log problem in crypto
Alice, Bob, the VPN and the blockchain...
The discrete log problem and generic algorithms
A few words about the quantum computer
Pairings

Combining congruences
Subexponential algorithms via congruences
More about smoothness
Overview of the current knowledge

Selected topics
Proving the quasi-polynomial complexity?
Proving the complexity of NFS?

45/76



Plan

The discrete log problem in crypto

Combining congruences

Selected topics
Proving the quasi-polynomial complexity?
Proving the complexity of NFS?

46/76



How to get a quasi-polynomial complexity?

Note: Version presented is by Granger–Kleinjung–Zumbrägel (2018).

Key point: assume the field has a nice subfield representation
Fq4k given as

Fq4k ⊂ Fq4 [X ]/(h1(X )Xq − h0(X )),

where h0 and h1 have degree ≤ 2 and there exists an irreducible
factor I(X ) of degree k in h1(X )Xq − h0(X ).

Goal: Rewrite all elements in terms of linear polynomials over Fq4 .

Important remark. If k ≈ q, then q is polynomial because the
input size ≈ q log q.

Quasi-polynomial complexity is qO(log q).
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Elements of the finite field

Fq4k ⊂ Fq4 [X ]/(h1(X )Xq − h0(X ))

Elements are represented as polynomials over Fq4 .
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Building block 1: deg 2 to linear

Let Q ∈ Fq4 [X ] be an irreducible polynomial of degree 2.
Consider the set of polynomials, for a, b, c in Fq4 :

Pa,b,c = Xq+1 + aXq + bX + c = Xq(X + a) + bX + c

that, after mapping Xq to h0/h1, become divisible by Q.

Then:
The probability that P(X ) splits in linear factors is in 1/q3;
The probability that its becomes divisible by Q after the
transformation is in 1/q8.

There are q12 choices: we should find one in time ≈ q.

Rem. If we start with Fqr instead of Fq4 , we expect ≈ qr−3 winners among q3r

choices.
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Building block 1: deg 2 to linear (cont’d)

Find a, b, c in Fq4 such that

Xq+1 +aXq +bX +c = Xq(X +a) +bX +c ≡ h0
h1

(X +a) +bX +c

splits completely on the LHS and is divisible by Q on the RHS.

We get a linear relation between logs of Q and linear elements.

Proving this can be done by studying the number of points on a
(singular) plane curve. Original proof by GKZ. Simpler proofs by
Göloğlu-Joux, and by Kleinjung-Wesolowski [ Talk of Thursday
evening]

Rem. Need to replace Fq4 by Fq18 .
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Building block 2: view deg 2d as deg 2

Let Q ∈ Fq4 [X ] be an irreducible polynomial of degree 2d .

Over Fq4d , Q is a product of d polynomials of degree 2.

For each factor Q′ of degree 2, apply building block 1 to Q′:
rewrite it with linear polynomials over Fq4d .

Then go down with the norm map: linear over Fq4d becomes
degree d over Fq4 .
(and irreducible factors divide d.)
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Putting things together

First, randomize the target element to see it as an irreducible
polynomial of degree a power of 2 (anti-smoothing!).
Then, apply building block 2 recursively, since it produces
only polynomials of degree a power of 2.
In the end, get a linear relation between the logs of the
target and the linear polynomials over Fq4 .
Repeat q4 times to be able to eliminate the logs of the linear
polynomials and conclude!
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With a picture

[ picture from On the powers of 2, by Granger, Kleinjung, Zumbrägel ]
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Last piece of non-proven step

Everything can be made rigorously proven except for the
existence of the nice field representation.
Furthermore, this works incredibly well in practice!

Still, we already have:
Thm. (Granger, Kleinjung, Zumbrägel) For every fixed p,
there exist infinitely many extension fields Fpn for which
the DLP in Fpn can be solved in expected quasi-polynomial
time.

Rem. Even when the extension degree n is prime, no practical problem to find
an appropriate extension with the nice representation.

54/76



Proving the descent phase
This step was not proven in the original proposals of
quasi-polynomial algorithms.

First proof by Granger Kleinjung Zumbrägel (2014).
Complicated plane curve with a strong role of PGL2(Fq).
Proof is a bit tedious, with several sub-cases to study.
Recent preprint by Göloğlu and Joux
After various algebraic manipulations, obtain a much simpler
curve, easier to analyse.
Kleinjung Wesolowski (2018)
Curve constructed in a much more elegant way. But require
more algebraic gemoetry background to understand the proof.
[ Talk of Thursday evening]

In all these proofs: show that the curve is irreducible, apply Weil’s
bound, deduce there are enough points, i.e. solutions to the initial
problem.
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(not) Proving the field representation

Recall the missing part to get a fully proven algorithm:

Missing result (unproven)
For any finite field Fq, for any integer k ≤ q + 2, there exists an
integer d ∈ O(log q)) and h0,h1, two polynomials in Fqd [X ] of
degree at most 2 such that

h1(X )Xq − h0(X )

has an irreducible factor of degree k.

Unclear how hard this problem is.
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(not) Proving the field representation

Recent paper by Giacomo Micheli.
On the selection of polynomials for the DLP quasi-polynomial time
algorithm in small characteristic

The idea is to use for h0 and h1 some specific polynomials with
just one free parameter t.

Then F (t,X ) = h1(t,X )Xq − h0(t,X ) defines a field extension of
Fq(t), and Chebotarev Density Theorem tells the probability to
obtain a given factoring pattern for F (t0,X ) for a random value of
t0.

The answer depends a lot on the Galois group of F (t,X ).
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Chebotarev density theorem for number fields

Chebotarev density theorem
Let K be a number field that is Galois over Q. Let H ⊂ Gal(K/Q)
be a conjugacy class. Then

Prob(Frob(p) = H) = #H
#Gal(K/Q) .

Here, Frob(p) is defined as follows:
Consider all prime ideal p above p;
Let Dec(p) be the subgroup of Gal(K/Q) that stabilizes p.
There is a morphism to the Galois group of the residue field:

αp : Dec(p)→ Gal(Kp/Fp).

Consider the preimages of the Frobenius automorphism of Kp.
The union of those is a conjugacy class called Frob(p).
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Simple application

We assume that we are in the generic case:
Let f (x) ∈ Z[x ] be an irreducible polynomial of degree d , such
that its Galois group is the full symmetric group.

Then, applying the theorem to the Galois closure of the extension
generated by f (x), we get

The probability that f (x) splits completely modulo a prime p
is 1/d!;
The probability that f (x) stays irreducible modulo a prime p
is 1/d .
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An exercise

Galois Z/2× Z/2:

Let f (x) = x4 + 1. Its Galois group is Z/2Z× Z/2Z.
Applying the theorem to K = Q[x ]/f (x), reducing modulo a prime
p, we get:

The probability that f (x) splits completely is 1/4;
The probability that f (x) has 2 irreducible factors of degree 2
is 3/4;
The other cases can not occur.
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Back to Micheli’s (not-)proof

Chebotarev density theorem for function fields is slightly more
involved due to fields of constants.

But Micheli proves that for his choice of h0(t,X ) and h1(t,X ), the
Galois group of h1(t,X )Xq − h0(t,X ) is the full symmetric
group.

He deduces that all the degrees can occur after randomizing t.

Unfortunately, there is no control on the degree d of the field
extension Fqd where t is going to lie.

Remember, we would need d ∈ O(log q).
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Proving the quasi-polynomial complexity?
Proving the complexity of NFS?
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The NFS diagram for DLP in F∗p

Let f (x) a polynomial and m integer, such that f (m) ≡ 0 mod p.

Z[x ]

Z[x ]/(x −m) Z[x ]/f (x)

Z/pZ

x 7→ m x 7→ α

mod p α 7→ m mod p

a − bx ∈

a − bm ∈ 3 a − bα

a − bm ∈

smooth? smooth?

If both sides are smooth, linear relation between logs in Z/pZ∗.
Rem. Enough to have smooth “norms”: f (a/b)bdeg f and a − bm.
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NFS: main steps

1. Polynomial selection: choice of f and m.
2. Collecting relations: find (a, b)-pairs such that both sides

are smooth.
3. Prepare the matrix (ugly details hidden).
4. Linear algebra: get a kernel vector modulo `|p − 1.
5. Individual log: rewrite the log of the target in terms of logs

of factor base elements.

In practice: Steps 2. and 4. are the most time-consuming.
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Polynomial selection

Goal: Find f , g s.t. p|Res(f , g) and resulting norms f (a/b)bdeg f

and g(a/b)bdeg g are as small as possible.

Base-m construction: take m ≈ p1/(d+1), where d ≈ ( log p
log log p )1/3.

Write p = f0 + f1m + f2m2 + · · ·+ fdmd , with 0 ≤ fi < m.
Take g = x −m and f = f0 + f1x + f2x2 + · · ·+ fdxd .
Note: many practical improvements. See Kleinjung (2006), Bai, Bouvier,
Kruppa, Zimmermann (2016). Usually in the context of factorization.

Joux-Lercier construction: Use the fact that p is prime.
Consider the lattice of polynomials with a given root modulo p and
use lattice reduction.
Same complexity in the end, but better in practice.

Both norms are ≈ Lp(2/3, . . .).
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Collecting relations

Pick (a, b) and check if both norms are simultaneous smooth.
If yes, this gives a linear relation between logarithms of small
elements.

Complexities:
a and b around Lp(1/3);
Norms are about Lp(2/3);
Smoothness bound set to Lp(1/3);
CEP theorem: probability of smoothness is Lp(1/3)−1.
From this, deduce the overall Lp(1/3) complexity.

Key of NFS speed: instead of waiting for the smoothness of one
element of size Lp(1), we hope for two elements of size Lp(2/3) to
be smooth.
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NFS and the smoothness question

Big caveat in the analysis:

We assume that the probability for a norm to be
smooth is the same as for a random integer of the
same size.

Proving this is hard !

But there have been interesting progress in recent years.
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Some results of Lachand

Armand Lachand (2015) started to prove smoothness results in
the direction we want.

Thm. (approximate statement). For f , a polynomial of degree 2,
the probability that b2f (a/b) is smooth is about the same as
expected, when a and b are chosen in a (growing) rectangle.

But in NFS:
There are 2 sides that must be simultaneously smooth;
The polynomial f can have arbitrary large degree.
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Some results of Lachand

Lachand also proved:

Thm. (approx. statement). Let f (x) = x3 + 2. The probability
that b3f (a/b) is smooth is about the same as expected, when a
and b are chosen in a (growing) rectangle.

The proof is a dense, 50-page long article that mixes high-tech
tools from analytic number theory.

The conclusion of Lachand’s work is that current knowledge is
probably not yet ready for proving NFS as we use it.
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Analysis of a randomized NFS
As usual: if you can’t prove an algorithm, change it to a variant
that is easier to prove !
Impressive work in this direction:

Jonathan D. Lee and Ramarathnam Venkatesan. Rig-
orous analysis of a randomised number field sieve.
Journal of Number Theory 2018)

Theorem
There exists a variant of NFS that, given an integer N to factor,
produces two integers x and y such that

x2 ≡ y2 mod N

in expected time LN(1/3, ((64/9)1/3 + o(1))).
Heuristically, there is a good chance that x 6≡ ±y mod N.
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Analysis of a randomized NFS

x2 ≡ y2 mod N

Heuristically, the two integers x and y are independent, so that
this produces a non-trivial factorisation of N with probability at
least 1/2.

Indeed, if x 6≡ ±y mod N, then compute

GCD(x − y ,N).

The proof of the previous theorem contains several parts also
apply to NFS for discrete logarithm in Fp.
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The modified algorithm

1. Generate LN(1/3) polynomials fi (x), sharing the same m as
a root modulo N.

2. Collect (a, b) pairs for all of them, in a parallel way.
3. In none of the polynomials gets enough relations, start again.
4. Pick one fi for which we have enough relations, and finish

with the classical NFS.
Main result. With good probabilities, at least one of the f (x)
has good smoothness properties, so that the failure in step 3. will
rarely occur.

Note: We skip details about how to deal rigorously with algebraic
obstructions (20 pages in the paper), because it does not translate to
DLP.
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Key for proving the smoothness

Idea. The family of fi ’s is chosen so that, for a given (a, b), the
probabilities of the smoothness of bd fi (a/b) can be analyzed
simultaneously.

Many difficult details to solve, in order to keep the same
complexity as the usual NFS.

In particular, the same approach allows to study the simultaneous
smoothness of both sides.

Additional algorithmic trick in order to avoid having to compute
the second-moment of the probabilities.
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Rigorously testing the smoothness

Now that we know that they exist, how do we detect efficiently
the smooth pairs?
Usual answer: ECM. But this is not rigorously proven.

Possible solutions:
Follow Pomerance and use an average analysis of
ECM(average on many numbers to test);
Use HECM: a variant with genus-2 curves that can be proven
to detect smooth numbers efficiently.

Ref: Lenstra, Pila, Pomerance. A hyperelliptic smoothness test, I. 1993.
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Lee-Venkatesan result: summary

Let’s recap:

They prove that for the randomized NFS:
The smoothness can be analyzed, so that the relation
collection works as expected;
The algebraic obstructions due to units and class groups can
be controlled rigorously.

The first part applies directly to NFS for DLP.

The second part would have to be adapted for DLP (no idea how
hard it would be).

The final step (non-trivial congruence vs individual logarithm) is
missing in both facto and DLP.
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Conclusion

Proving discrete log algorithms requires:
arithmetic, discrete maths;
algebraic number theory;
analytic number theory;
algebraic geometry;
. . .

And more often than not, the algorithm must be changed to
become easier to analyze.

Will we have soon a better than L(1/2) proven
complexity for DLP?
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