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Lattice-Based Crypto

Lattice problems provide a strong fundation for Post-Quantum Crypto

Worst-case to average-case reduction [Ajt99, Reg09]

Worst-case Approx-SVP ≤
{

SIS (Short Intreger Solution)
LWE (Learning With Errors)

How hard is Approx-SVP ? Depends on the Approximation factor α.
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Lattices over Rings (Ideals, Modules)

Generic lattices are cumbersome! Key-size = Õ(n2).

NTRU Cryptosystems [HPS98, HHGP+03]

Use the convolution ring R = R[X ]/(X p − 1), and module-lattices:

Lh = {(x , y) ∈ R2, hx + y ≡ 0 mod q}.

Same lattice dimension, Key-Size = Õ(n). Later came variants with
worst-case fundations:

wc-to-ac reduction [Mic07, LPR13]

Worst-case Approx-Ideal-SVP ≤
{

Ring-SIS
Ring-LWE

Applicable for cyclotomic rings R = Z[ζm] (ζm a primitive m-th root of unity).

Denote n = degR. In our cyclotomic cases: n = φ(m) ∼ m.
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Approx-Ideal-SVP in poly-time for large α

Approx-Ideal-SVP solvable in Quantum poly-time, for

R = Z[ζm], α = exp(Õ(
√
n)).

Better tradeoffs

C
ry
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α
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√
n) eΘ̃(n)
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√
n)

eΘ̃(n)
BKZ

This alg.

Impact and limitations

I No schemes broken

I Hardness gap between
SVP and Ideal-SVP

I New cryptanalytic tools

⇒ start favoring weaker
assumptions ?
e.g. Module-LWE
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√
n)).

Better tradeoffs

C
ry

p
to

α
poly(n) eΘ̃(

√
n) eΘ̃(n)

Time

poly(n)

eΘ̃(
√
n)

eΘ̃(n)
BKZ

This alg.

Impact and limitations

I No schemes broken

I Hardness gap between
SVP and Ideal-SVP

I New cryptanalytic tools

⇒ start favoring weaker
assumptions ?
e.g. Module-LWE
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Algebraic Number Theory
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Ideals and Principal Ideals

Cyclotomic number field: K (= Q(ζm)), ring of integer OK (= Z[ζm]), where
ζm is a formal m-th root of unity. The degree of K is n = ϕ(m)

Definition (Ideals)

I An integral ideal is a subset h ⊂ OK closed under addition, and by
multiplication by elements of OK ,

I A (fractional) ideal is a subset f ⊂ K of the form f = 1
x h, where

x ∈ Z,

I A principal ideal is an ideal f of the form f = gOK for some g ∈ K .

In particular, ideals are lattices.

We denote FK the set of fractional ideals,
and PK the set of principal ideals.

Léo Ducas (CWI, Amsterdam) Quantum Ideal-SVP Math of PKC. Mar. 2019 6 / 47



Ideals as Lattices

There is a Ring morphism (the empeddings):

K → Cn

ζ 7→ (ωi )i∈Z×
m

where ω ∈ C is a complex m-th root of unity. This allows to view ideal as
lattices.

I One can therefore view Ideal as lattices

I In the empedding space, multiplication is component-wise (' FFT)
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Class Group

Ideals can be multiplied, and remain ideals:

ab =

{∑
finite

aibi , ai ∈ a, bi ∈ b

}
.

The product of two principal ideals remains principal:

(aOK )(bOK ) = (ab)OK .

FK form an abelian group1, PK is a subgroup of it.

Definition (Class Group)

Their quotient forms the class group ClK = FK/PK .
The class of an ideal a ∈ FK is denoted [a] ∈ ClK .

An ideal a is principal iff [a] = [OK ].

1with neutral element OK
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Lattice of Class Relations

Choose a factor basis: a set B = {p1, . . . , pk} such that {[p1], . . . , [pk ]}
generates ClK .
Consider the morphism

φ : Zk → ClK

(x1, . . . xk) 7→
[∏

pxii

]

I The kernel Λ = ker φ is the lattice of class relation over B.

I Reducing xi modulo Λ : finding a small representative in the same class
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Unit Group and Principal Ideals

I An element g ∈ K× generates an ideal gOK (≈ GLn(R))

I The unit group O×K = {x ∈ OK s.t. x−1 ∈ OK}. (≈ GLn(Z))

I g and h generates the same ideal iff g = uh for some unit u ∈ OK

PK ' K×/O×K

({lattices} ' GLn(R)/GLn(Z))

I Unlike {lattices} ' GLn(R)/GLn(Z), the groups are commutative :
reduction should be much easier...

I Spoiler: take the log and O×K becomes a lattice !
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Tesselation: commutative v.s. non-commutative
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Overview
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4 Steps to Ideal-SVP

The Close Principal Multiple Problem

Given an ideal a, find c ⊂ a that is principal, and not much sparser

1. Find a representative
∏

pxii of [a−1] [EHKS14, BS15]

2. Make the xi small by reducing modulo class relations [CDW17]

⇒ Output c = a ·
∏

pxii

Short Generator Problem

Given a principal ideal c, find a short generator g of c

3. Find any generator g of c [EHKS14, BS15]

4. Reduce g modulo the unit group O×K [CDPR16]

⇒ Output g
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This talk

Working Hypothesis

|Quantum〉 = Magic

We will focus on the following steps:

2. Make the xi small by reducing modulo class relations [CDW17]

4. Reduce g modulo the unit group O×K [CDPR16]

For a survey covering all the steps, refer to [Duc17].
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The Close Principal Multiple
Problem
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From CPM to Ideal-SVP

Definition (The Close Principal Multiple problem)

I Given an ideal a, and an factor F

I Find a small integral ideal b such that [ab] = [OK ] and Nb ≤ F

Smallness is with respect to the Algebraic Norm N of b,
(essentially the volume of b as a lattice).
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Factor Basis, Class-Group Discrete-Log

Choose a factor basis B of integral ideals and search b of the form:

b =
∏
p∈B

pep .

We choose |B| small (say n) and p ∈ B small as well Np = poly(n).

Corollary (Quantum Cl-Discrete Logarithm,[BS15])

Assume B generates the class-group. Given a and B, one can find in
quantum polynomial time a vector e ∈ ZB such that:∏

p∈B

[
pep
]

=
[
a−1
]
.

This finds a b such that [ab] = [OK ], yet:

I b may not be integral (negative exponents, yet easy to solve)

I Nb ≈ exp(‖e‖1) may be huge (unbounded e, want ‖e‖1 = Õ(n3/2)).
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Navigating the Class-Group

Cayley-Graph(G ,A):

I A node for any element g ∈ G

I An arrow g
a−→ ga for any g ∈ G , a ∈ A

Figure: Cayley-Graph((Z/5Z,+),{1,2})

�?

Rephrased Goal for CPM

Find a short path from [a] to [OK ] in Cayley-Graph(Cl,B).

I Using a few well chosen ideals in B, Cayley-Graph(Cl,B) is an
expander Graph [JW15]: very short paths exist.

I Finding such short path generically too costly: |Cl | > exp(n)
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A lattice problem

Cl is abelian and finite, so Cl = ZB/Λ for some lattice Λ:

Λ =
{

e ∈ ZB, s.t.
∏

[pep] = [OK ]
}

i.e. the (full-rank) lattice of class-relations in base B.

Figure: (Z/5Z,+) = Z{1,2}/Λ

�

Rephrased Goal for CPM: CVP in Λ

Find a short path from t ∈ ZB to any lattice point v ∈ Λ.

In general: very hard. But for good Λ, with a good basis, can be easy.

Why should we know anything special about Λ ?
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Example

Figure: Cayley-Graph(Z/5Z, {1, 2}) ' Z{1,2}/Λ
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More than just a lattice

Let G denote the Galois group, it acts on ideals and therefore on classes:

[a]σ = [σ(a)].

Consider the group-ring Z[G ] (formal sums on G ), extend the G -action:

[a]e =
∏
σ∈G

[σ(a)]eσ where e =
∑

eσσ.

I Assume B = {pσ, σ ∈ G}
I G acts on B, and so it acts on ZB by permuting coordinates

I the lattice Λ ⊂ ZB is invariant by the action of G !
i.e. Λ admits G as a group of symmetries

Λ is more than just a lattice: it is a Z[G ]-module
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Stickelberger’s Theorem

In fact, we know much more about Λ !

Definition (The Stickelberger ideal)

The Stickelberger element θ ∈ Q[G ] is defined as

θ =
∑

a∈(Z/mZ)∗

( a

m
mod 1

)
σ−1
a where G 3 σa : ω 7→ ωa.

The Stickelberger ideal is defined as S = Z[G ] ∩ θZ[G ].

Theorem (Stickelberger’s theorem)

The Stickelberger ideal annihilates the class group: ∀e ∈ S , a ⊂ K

[ae ] = [OK ].

In particular, if B = {pσ, σ ∈ G}, then S ⊂ Λ.
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Geometry of the Stickelberger ideal

Fact

There exists an explicit (efficiently computable) short basis of S , namely it
has ternary coefficients.

Corollary

Given t ∈ Z[G ], one can find x ∈ S suh that ‖x − t‖1 ≤ n3/2.

Conclusion: back to CPM
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Extra technicalities

Convenient simplifications/omissions made so far:

B = {pσ, σ ∈ G} generates the class group.

I can allow a few (say polylog) many different ideals and their
conjugates in B

I Numerical computation says such B should exist [Sch98]

I Theorem+Heuristic then say we can find such B efficiently

Eliminating minus exponents

I Easy when h+ = 1 : [a−1] = [ā], doable when h+ = poly(n). a

I Justified by numerical computations and heuristics
[BPR04, Sch03]

a h+ is the size of the class group of K+, the max. real subfield of K
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The Short Generator Problem
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Invocation of |Quantum〉 Magic

Given an ideal c, one can find a generator h of it using a quantum computer.
[EHKS14, Bia14]
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The Logarithmic Embedding

The n embeddings σi : K 7→ C for i for i ∈ Z×m are given by

σi (ζ) = ωi

The logarithmic Embedding is defined as

Log : K → Rn/2

x 7→ (log |σi (x)|)i∈Z×
m/±1

It induces

I a group morphism from (K \ {0}, ·) to (Rn/2,+)

I a monoid morphism from (R \ {0}, ·) to (Rn/2,+)
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The Unit Group

By Dirichlet Unit Theorem

I the kernel of Log is the cyclic group T of roots of unity of OK

I LogO×K ⊂ R
n is an lattice of rank r + c − 1

(where K has r real embeddings and 2c complex embeddings)

Reduction modulo OK : a Close Vector Problem

Elements g , h ∈ K generate the same ideal if and only if h = g · u for some
unit u ∈ O×K . In particular

Log g ∈ Log h + LogO×K .

and g is the “smallest” generator iff Log u ∈ LogO×K is a vector “closest”
to Log h.
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Example: Embedding Z[
√

2] ↪→ R2

1

1

−1

0

1

2

√
2

1 +
√

2

I x-axis: a + b
√

2 7→ a + b
√

2

I y -axis: a + b
√

2 7→ a− b
√

2

I component-wise multiplication

I Symmetries induced by
I mult. by −1
I conjugation

√
2 7→ −

√
2

� “Orthogonal” elements

� Units (algebraic norm 1)

� “Isonorms” curves
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Example: Logarithmic Embedding LogZ[
√

2]

({•},+) is a sub-monoid of R2

1

1
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Example: Logarithmic Embedding LogZ[
√

2]

LogO×K =({•},+) ∩ � is a lattice of R2, orthogonal to (1, 1)

1

1
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Example: Logarithmic Embedding LogZ[
√

2]

{•} ∩ � are shifted finite copies of LogO×K

1

1
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Example: Logarithmic Embedding LogZ[
√

2]

Some {•} ∩ � may be empty (e.g. no elements of Norm 3 in Z[
√

2])

1

1

Léo Ducas (CWI, Amsterdam) Quantum Ideal-SVP Math of PKC. Mar. 2019 30 / 47



Reduction modulo LogZ[
√

2]×

The reduction modulo Z[
√

2]×.

1

1
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Cyclotomic units

Let’s assume m = pk for some prime p.

zj = 1− ζ j and bj = zj/z1 for all j coprimes with m.

The bj are units, and the group C generated by

ζ, bj for j = 2, . . .m/2, j coprime with m

is known as the group of cyclotomic units.

Simplification 1 (Weber’s Class Number Problem)

We assume2 that O×K = C . It is conjectured to be true for m = 2k .

Simplification 2 (for this talk)

We study the dual matrix Z∨, where zj = Log zj .
It can be proved to close to B∨ where bj = zj − z1.

2One just need the index [O×
K : C ] = h+(m) to be small.
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How good is this basis

I It is quite easy to prove that ‖zi‖ ≤ O(
√
m).

I ⇒ One can solve CVP with `∞ distance ≤ O(
√
n log n).

I ⇒ we can find a generator of length ‖g‖ ≤ exp(O(
√
n log n)) · (Nc)1/n.

QED

Recall that the principal ideal c ⊂ a verified Nc ≤ exp(n3/2)Na. That gives
g ∈ a:

‖g‖ ≤ exp(
√
n log n) · vol(a)1/n.

We have solved Ideal-SVP with approximation fact exp(O(
√
n log n))
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Don’t leave !
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More fun with LogO×K ...

How well can we solve BDD in this lattice ?

This actually has devastating consequence for ‘atypical’ crypto schemes
(Soliloquy and the first generation of Fully Homomorphic Encryption Scheme)
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Round-Off Decoding

We also need the fundamental domain to have an efficient reduction
algorithm. The simplest one follows:

RoundOff(B, t) for B a basis of Λ

I Return B · bB−1 · te.

Used as a decoding algorithm, its correctness is characterized by the error e
and the dual basis B∨ = B−T .

Fact

Suppose t = v + e for some v ∈ Λ. If 〈b∨j , e〉 ∈ [−1
2 ,

1
2 ) for all j , then

Round(B, t) = v.
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Dual of a Circulant Basis

Notice that Zij = log |σj(1− ζ i )| = log |1− ωij |:
the matrix Z is G -circulant for the cyclic group G = Z×m/± 1.

Fact

If M is a non-singular, G -circulant matrix, then

I its eigenvalues are given by λχ =
∑

g∈G χ(g) ·M1,g

where χ ∈ Ĝ is a character G → C
I All the vectors of M∨ have the same norm ‖m∨i ‖2 =

∑
χ∈Ĝ |λχ|

−2

Note: The characters of G can be extended to even Dirichlet characters
mod m: χ : Z→ C, by setting χ(a) = 0 if gcd(a,m) > 1.
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χ∈Ĝ |λχ|

−2

Note: The characters of G can be extended to even Dirichlet characters
mod m: χ : Z→ C, by setting χ(a) = 0 if gcd(a,m) > 1.
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Computing the Eigenvalues

We wish to give a lower bound on |λχ| where

λχ =
∑
a∈G

χ(a) · log |1− ωa|.

We develop using the Taylor series

log |1− x | = −
∑
k≥1

xk/k

and obtain

−λχ =
∑
a∈G

∑
k≥1

χ(a) · ω
ka

k
.
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Léo Ducas (CWI, Amsterdam) Quantum Ideal-SVP Math of PKC. Mar. 2019 38 / 47



Computing the Eigenvalues (continued)

We were trying to lower bound |λχ| where

−λχ =
∑
k≥1

1

k
·
∑
a∈G

χ(a) · ωka.

Fact (Separability of Gauss Sums)

If χ is a primitive Dirichlet character modm then∑
a∈Z×

m

χ(a) · ωka = χ(k) · G (χ) where |G (χ)| =
√
m.

For this talk, let’s ignore non-primitive characters. We rewrite

∣∣λχ∣∣ =

√
m

2
·

∣∣∣∣∣∑
k≥1

χ(k)

k

∣∣∣∣∣.
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The Analytic Hammer

We were trying to lower bound
∣∣λχ∣∣ =

√
m
2 ·
∣∣∑

k≥1
χ(k)
k

∣∣.
One recognizes a Dirichlet L-series

L(s, χ) =
∑ χ(k)

ks
.

Theorem ([Lit24, LLS15])

For any primitive non-quadratic Dirichlet character χ mod m it holds that

1/`(m) ≤ |L(1, χ)| ≤ `(m) where `(m) = C lnm

for some universal constant C > 0.

Léo Ducas (CWI, Amsterdam) Quantum Ideal-SVP Math of PKC. Mar. 2019 40 / 47



The Analytic Hammer

We were trying to lower bound
∣∣λχ∣∣ =

√
m
2 ·
∣∣∑

k≥1
χ(k)
k

∣∣.
One recognizes a Dirichlet L-series

L(s, χ) =
∑ χ(k)

ks
.

Theorem ([Lit24, LLS15])

For any primitive non-quadratic Dirichlet character χ mod m it holds that

1/`(m) ≤ |L(1, χ)| ≤ `(m) where `(m) = C lnm

for some universal constant C > 0.
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Conclusion

Theorem

Then, all the vectors of B∨ have the same norm and, this norm is upper
bounded as follows ∥∥b∨j

∥∥2 ≤ O
(
m−1 · log3 m

)
.
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Further work
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D., Plancon, Wesolowski 2019

I Analyse the hidden factors behind Õ’s.

I Predict when this algorithm outperform LLL and BKZ

Hanrot, Stehle and Pellet–Mary 2019

I Using some precomputation depending only on the number field K

I Generalize this results to any number field K

I Generalize to a time/approx-factor trade-off

T = exp(Õ(nc)), α = exp(Õ(n(1−c)/2))
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