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Learning Parity with Noise (LPN) [BFKL93]
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Learning with Errors (LWE) [RO5]

(random) Known properties:
N secretvector S:%riigd * Worst-case to average-case reduction.
S * Contained in SZK (for useful params).
Known applications:
mi A + e = b . |
e Symmetric / Public-Key Encryption
e Collision resistant hash (CRH).
public * Homomorphic Encryption.
random public outcome
matrix e Attribute-Based Encryption.

Arithmetics modulo g>n, Gaussian noise

Goal: (A,b) =>s

* Non-Interactive Zero-Knowledge.



Learning Parity with Noise (LPN) [BFKL93]

(random) Known properties:
n secret vector ~ shortiid
noise
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Arithmetics modulo 2, Bernoulli noise

Goal: (A,b) => s Why so different?




Our Results

New properties:

* Worst-case to average-case reduction.

LPN = Average-case “Nearest Codeword Problem” (NCP).

We show: “super hard” LPN is harder than “barely hard” (worst-case) NCP.

* “Barely hard” LPN/NCP contained in SZK.

New applications:

» Collision resistant hashing based on “barely hard” LPN (concurrently with [YzZwGL17]).

* Follow-up works [BLSV18] extend to IBE, leakage resilience, KDM security (via laconic OT).



Nearest Codeword Problem (NCP)

n coeff. vector ~ low weight Same as LPN except (C, x) are arbitrary.
diff.
S NP-Hard in the worst case [ABSS93,DMS99].

We require Cis balanced.
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Our Technique: Smoothing

[LO5]: Solver for LPN with m = n'% | rel. weight &’
=> Solver for LPN with m = n?, rel. weight § < &’

n
Idea: Random matrix = extractor. Use to rerandomize. r
Q: What is the min-weight to get entropy n? A: —— suffices!
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The reduction: Generate n*"" vectors r
For each compute (a’,b")=(rA, rb).
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Our Technique: Smoothing

Apply technique to arbitrary (balanced) C? Arbitrary C cannot be extractor.

Observation: Entropy extraction not needed, only extract from specific smoothing dist.

n
Can show this using harmonic analysis / linear r
distinguishers / Vazirani XOR lemma.
Note: We get b’ = rt = rCs+rx = a’s+e’ n2 C
Need to argue that e’ is indep. of a’ (not just low weight)
Plug in barely hard NCP instance to get super hard LPN instance
uniform a’

=> Worst-case to average case reduction.



Connection to LWE / Lattices

Our technique is analogous to the concept of smoothing in the lattice world.

A distribution is smoothing for a lattice, if modulo the lattice it is uniform
<=> if its product with the dual bases is uniform (over cosets)

Usually in lattice literature: Smoothing using Discrete Gaussians,

in this work we extend the notion of smoothing beyond Gaussians.



Open Problems
Extend the params of our reduction.

Lower bound on smoothing? Non-trivial smoothing for unbalanced codes?
Is “barely hard” LPN/NCP actually not solvable in poly-time? Does balance help?

Construct more cryptography from LPN.

Vinod’s Question: Is there a CRH candidate that is provably not in SZK?
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