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SISβ,q,m

The Small Integer Solution Problem

Given a uniform A ∈ Zm×n
q , find x ∈ Zm \ 0 such that:

‖x‖ ≤ β and xT · A = 0 mod q.
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Design principle

Start from a one-way function x 7→ y = f (x).

Signing key: x

Verification key: y

The signer uses a zero-knowledge proof that it knows x s.t. f (x) = y .

The random oracle allows to:

Make the proof non-interactive

Embed the message in the proof challenge

This is the (heuristic) Fiat-Shamir transform.
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Which one-way function to start from?

The Short Integer Solution Problem

Given a uniform A ∈ Zm×n
q , find x ∈ Zm \ 0 such that:

‖x‖ ≤ β and xT · A = 0 mod q.

We want a function that is easy to evaluate and (SIS-)hard to invert.

fA :
{−B, . . . ,B}m → Zn

q

x 7→ xTA mod q

Why is it hard to invert?

Let A be a SIS instance.

Sample x←↩ U({−B, . . . ,B})m, set y = xT · A.

Adversary gets A and y, and gives back a pre-image x′ of y.

Claim: x− x′ is a SISβ solution for β = 2B (with high probability).
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Proof of knowledge for SIS

Prover wants to convince Verifier that it knows s small s.t.:
sT · A = tT , with A and t known.

Prover generates a blinding equation:

yT · A = wT ,

with y small. It sends w to Verifier.

After receiving w, Verifier sends a challenge c ∈ Z small to Prover.

Prover replies with y + c · s.

Verifier checks whether

y + c · s is small and (y + c · s)TA = wT + ctT .
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SIS-based signature, 1st attempt

Verify: accept iff ‖σ1‖ is small and σT
1 A = wT + cTT .
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This signature scheme is insecure but can be fixed

Assume for simplicity that each coefficient of S , c and y is uniform in the
interval [−B,+B], where B � q.

σT
1 = yT + cT · S conditioned on c and S , has center cT · S .
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This signature scheme is insecure but can be fixed

Assume for simplicity that each coefficient of S , c and y is uniform in the
interval [−B,+B], where B � q.

σT
1 = yT + cT · S conditioned on c and S , has center cT · S .

Fix: use rejection sampling [Lyu09,Lyu12]

For uniform distributions in intervals, rejection is simple

Need to restart signing process, if rejection occurs
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Security proof intuition (in the random oracle model)

To answer signing queries, the challenger simulates by sampling σ1 and c
from their distributions, and defines

H (A,T ,w = σ1A− cT ,M) := c

⇒ No need for a signing key anymore!

By rewinding a forging algorithm A and reprogramming H, we obtain:

σT
1 A = wT + cTT

σ′T1 A = wT + c′
T
T

Subtracting gives a SIS solution to instance (A‖T ).

This is Schnorr’s signature, and its proof, adapted to SIS!
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Further remarks

Setting parameters requires work. Compromises between:

Security
Probability of rejection (and hence signing time)
Size of signatures

Further improvement: use LWE rather than SIS

Shorter S ⇒ shorter y ⇒ smaller signatures
Security proof can be made tight
Security proof can be done in the quantum random oracle model
(eprint 2015/755)

Precise comparison to GPV-type signatures.

Efficient signature without the random oracle heuristic?

Efficient Schnorr-type signature with security proof in the quantum
random oracle model?

Damien Stehlé Introduction to lattice-based cryptography 20/03/2019 10/26



Introduction Signing from SIS Improving efficiency NTRU Conclusion

Further remarks

Setting parameters requires work. Compromises between:

Security
Probability of rejection (and hence signing time)
Size of signatures

Further improvement: use LWE rather than SIS

Shorter S ⇒ shorter y ⇒ smaller signatures
Security proof can be made tight
Security proof can be done in the quantum random oracle model
(eprint 2015/755)

Precise comparison to GPV-type signatures.

Efficient signature without the random oracle heuristic?

Efficient Schnorr-type signature with security proof in the quantum
random oracle model?
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It’s all slow

Public key contains a uniformly sampled matrix A.

Share A among users
(but maybe an adversary can work on A to break all keys)

Store only the seed of the randomness used to sample A.

Encrypting, Signing and Verifying require matrix-vector multiplication.

Encryption is only for bits.
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Replace matrices by structured matrices
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Ring-LWE, Module-LWE

Structured matrices ⇔ Polynomials

This allows us to exploit fast polynomial arithmetic.

The same encryption scheme as the one we saw work. But:

( Matrix × vector ) is replaced by (polynomial × polynomial)

Encryption of a bit is replaced by encryption of a binary polynomial

⇒ Quasi-optimal efficiency: handling n plaintext bits costs Õ(n).

What about security?
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Ideal/Polynomial-SIS [LM06,PR06]

Let q ≥ 2, β > 0, m > 0. Let f = xn + 1 ∈ Z[x ] with n = 2k .

Ideal-SISf
m,q,β

Given (a1, . . . , am) uniform in Zq[x ]/f , find x1, . . . , xm ∈ Z[x ]/f s.t.:∑
i xiai = 0 mod q,

0 < ‖x‖ ≤ β, where x ∈ Zmn consists in the coeffs of the xi ’s.

This is SIS, with matrix A made of stacked blocks Rotf (ai ).
The j-th row of Rotf (ai ) is made of the coefficients of x j−1 · ai mod f .

Why this f ?

f is irreducible ⇒ Q[x ]/f is a field.
For q = 1 [2n] prime: Zq[x ]/f ' Zq × . . .× Zq.

Damien Stehlé Introduction to lattice-based cryptography 20/03/2019 15/26



Introduction Signing from SIS Improving efficiency NTRU Conclusion

Ideal/Polynomial-SIS [LM06,PR06]

Let q ≥ 2, β > 0, m > 0. Let f = xn + 1 ∈ Z[x ] with n = 2k .

Ideal-SISf
m,q,β

Given (a1, . . . , am) uniform in Zq[x ]/f , find x1, . . . , xm ∈ Z[x ]/f s.t.:∑
i xiai = 0 mod q,

0 < ‖x‖ ≤ β, where x ∈ Zmn consists in the coeffs of the xi ’s.

This is SIS, with matrix A made of stacked blocks Rotf (ai ).
The j-th row of Rotf (ai ) is made of the coefficients of x j−1 · ai mod f .

Why this f ?

f is irreducible ⇒ Q[x ]/f is a field.
For q = 1 [2n] prime: Zq[x ]/f ' Zq × . . .× Zq.
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Ideal/Polynomial-LWE [SSTX09]

Let q ≥ 2, α > 0. Let f = xn + 1 ∈ Z[x ] with n = 2k .

Search P-LWEf

Given (a1, . . . , am) and (a1 · s + e1, . . . , am · s + em), find s.

s uniform in Zq[x ]/f

All ai ’s uniform in Zq[x ]/f

The coefficients of the ei ’s are sampled from ναq
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Hardness of P-SIS / P-LWE

There is a reduction from SVPγ for ideals of Z[x ]/f to P-SISf .
The approximation factor γ is proportional to β.

There is a quantum reduction from SVPγ for ideals of Z[x ]/f to search
P-LWEf .
The approximation factor γ is proportional to 1/α.

Vacuous if SVPγ for ideals of Z[x ]/f is easy

Ideal-SVPγ is actually easier than SVPγ!
[CDW17,PHS19], 2016/885, 2019/215
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Ring-LWE [LPR10]

Let q ≥ 2, α > 0, f ∈ Z[x ] monic irreducible of degree n.

K : number field defined by f .
OK : its ring of integers. OK

∨: its dual ideal.
σ1, . . . , σn: the Minkowski embeddings.

As complex embeddings come by pairs of conjugates,

the σk ’s give a bijection σ from KR = K ⊗Q R to Rn.

Search Ring-LWEf

Given (a1, . . . , am) and (a1 · s + e1, . . . , am · s + em), find s.

s uniform in OK
∨/qOK

∨

All ai ’s uniform in OK/qOK

The σ(ei )’s are sampled from ναq

Decision Ring-LWE: distinguish uniform (ai , bi )’s from (ai , bi )’s as above
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Hardness of Ring-LWE

LPR10 : For all f , there is a reduction from ApproxSVP for OK -ideals to
search Ring-LWEf .

For f cyclotomic, there is a reduction from search to decision
Ring-LWEf .

PRS17 : For all f , there is a reduction from ApproxSVP for OK -ideals to
decision Ring-LWEf .
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The landscape is complex

Selected open problems

What are the precise relationships between P-LWE, Ring-LWE and
Module-LWE? [AD17,RSW18]

What do the attacks on Ideal-SVP mean? [CDW17,PHS19]

Is the relevant worst-case problem SVP for OK -modules? [LS15]

Can we go from a K to a K ′? [GHPS13]

Are some K than others? See Wouter’s talk!

What to think about MP-LWE? [Lyubashevsky16,RSSS17]

It matters! All these Round 2 NIST candidates rely on algebraic lattices:

Dilithium, Falcon, Tesla,

Kyber, LAC, NewHope, NTRU, NTRUPrime, Round5, SABER, ThreeBears
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NTRU — a personal variant of [HPS98]

Notations: R = Z[x ]/(xn + 1) Rq = Zq[x ]/(xn + 1)

Keygen: Sample f , g in R with coeffs in {−1, 0, 1}.
sk = f , pk = h := g/f mod q.

Encrypt: M ∈ R with coeffs in {0, 1}. Sample s and e small.
C = 2(h · s + e) + M mod q.

Decrypt: (C · f mod q) mod 2 is M · f mod 2
Divide by f mod 2.

(This requires f invertible mod q and mod 2)

Correct as long as |2(g · s + e · f )| < q/2 with probability ≈ 1
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The design is versatile

f = xn + 1, q and “2” may be changed

Use diverse types of rounding or noises

Use small or big coefficients for f , g , s, e

Security boils down to two intractability assumptions:

Indistinguishability of h = g/f mod q from uniform in Rq.
May be waived, but at a significant cost [SS11]

Can be done efficiently for large q [ABD16,CJL16,KF17]

Indistinguishability of ciphertext from uniform, i.e., Ring-LWE-like.
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My favorite NTRU open problem

Breaking the key is solving unique-SVP for a rank-2 module lattice.

M := {x1, x2 ∈ R2 : x1 · h = x2 mod q}

For a uniform h, we would expect λ1(M) ≈ √n · q
But (f , g) ∈ M is shorter than that

For arbitrary lattices, BDD reduces to unique-SVP in 1 more dimension,
and unique-SVP reduces to BDD in same dimension.

Is unique-SVP for rank-2 modules computationally closer to:

BDD in rank-1 modules, i.e., ideal lattices?
(some weaknesses are known)

or BDD in rank-2 modules?
(some equivalence with Ring-LWE known [LS15,AD17])
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Damien Stehlé Introduction to lattice-based cryptography 20/03/2019 24/26



Introduction Signing from SIS Improving efficiency NTRU Conclusion

Plan for this lecture

1 Signing from SIS

2 Improving efficiency

3 NTRU
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Wrapping up

Lattices are conjectured to provide hard worst-case problems.

SIS/LWE are a-c variants no easier than some hard w-c lattice problems.

There is no fundamental weakness in SIS/LWE.

The reductions are not meant for setting parameters,
but for ensuring that there is no fundamental weakness.

SIS and LWE can be viewed linear algebra problems.

Leads to simple cryptographic design.

Allows advanced cryptographic constructions.

To get faster schemes, use algebraic lattices.

Does it impact computational intractability?

Plenty of problems involving algebraic number theory.
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