Signing from SIS	Improving efficiency	NTRU	Conclusion
0000000	000000000	0000	00

Introduction to lattice-based cryptography

Damien Stehlé

ENS de Lyon

Aussois, March 2019

Introduction	Signing from SIS	Improving efficiency	NTRU 0000	Conclusion OO
Plan for this	lecture			

O Signing from SIS

- Improving efficiency
- INTRU INTRU

	Signing from SIS	Improving efficiency	NTRU 0000	Conclusion OO
$SIS_{\beta,q,m}$				

The Small Integer Solution Problem

Given a uniform $A \in \mathbb{Z}_q^{m \times n}$, find $\mathbf{x} \in \mathbb{Z}^m \setminus \mathbf{0}$ such that:

$$\|\mathbf{x}\| \leq \beta$$
 and $\mathbf{x}^T \cdot A = \mathbf{0} \mod q$.

Improving efficiency	NTRU 0000	Conclusion OO
	Improving efficiency	Improving efficiency NTRU 0000000000 0000

Start from a one-way function $x \mapsto y = f(x)$.

- Signing key: x
- Verification key: y

The signer uses a zero-knowledge proof that it knows x s.t. f(x) = y.

The random oracle allows to:

- Make the proof non-interactive
- Embed the message in the proof challenge

This is the (heuristic) Fiat-Shamir transform.

Signing from SIS	Improving efficiency	NTRU	Conclusion
0000000			

Which one-way function to start from?

The Short Integer Solution Problem

Given a uniform $A \in \mathbb{Z}_{a}^{m \times n}$, find $\mathbf{x} \in \mathbb{Z}^{m} \setminus \mathbf{0}$ such that:

$$\|\mathbf{x}\| \leq \beta$$
 and $\mathbf{x}^T \cdot A = \mathbf{0} \mod q$.

We want a function that is easy to evaluate and (SIS-)hard to invert.

$$f_A: \begin{array}{ccc} \{-B,\ldots,B\}^m & \to & \mathbb{Z}_q^n \\ \mathbf{x} & \mapsto & \mathbf{x}^T A \bmod c \end{array}$$

Why is it hard to invert?

- Let A be a SIS instance.
- Sample $\mathbf{x} \leftrightarrow U(\{-B,\ldots,B\})^m$, set $\mathbf{y} = \mathbf{x}^T \cdot A$.
- Adversary gets A and y, and gives back a pre-image x' of y.
- Claim: $\mathbf{x} \mathbf{x}'$ is a SIS_{β} solution for $\beta = 2B$ (with high probability).

Signing from SIS	Improving efficiency	NTRU	Conclusion
0000000			

Which one-way function to start from?

The Short Integer Solution Problem

Given a uniform $A \in \mathbb{Z}_q^{m \times n}$, find $\mathbf{x} \in \mathbb{Z}^m \setminus \mathbf{0}$ such that:

$$\|\mathbf{x}\| \leq \beta$$
 and $\mathbf{x}^T \cdot A = \mathbf{0} \mod q$.

We want a function that is easy to evaluate and (SIS-)hard to invert.

$$f_A: \begin{array}{ccc} \{-B,\ldots,B\}^m & \to & \mathbb{Z}_q^n \\ \mathbf{x} & \mapsto & \mathbf{x}^T A \bmod q \end{array}$$

Why is it hard to invert?

- Let A be a SIS instance.
- Sample $\mathbf{x} \leftrightarrow U(\{-B, \dots, B\})^m$, set $\mathbf{y} = \mathbf{x}^T \cdot A$.
- Adversary gets A and y, and gives back a pre-image x' of y.
- Claim: $\mathbf{x} \mathbf{x}'$ is a SIS_{β} solution for $\beta = 2B$ (with high probability).

Signing from SIS	Improving efficiency	NTRU	Conclusion
0000000			

Which one-way function to start from?

The Short Integer Solution Problem

Given a uniform $A \in \mathbb{Z}_q^{m \times n}$, find $\mathbf{x} \in \mathbb{Z}^m \setminus \mathbf{0}$ such that:

$$\|\mathbf{x}\| \leq \beta$$
 and $\mathbf{x}^T \cdot A = \mathbf{0} \mod q$.

We want a function that is easy to evaluate and (SIS-)hard to invert.

$$f_A: \begin{array}{ccc} \{-B,\ldots,B\}^m & \to & \mathbb{Z}_q^n \\ \mathbf{x} & \mapsto & \mathbf{x}^T A \bmod q \end{array}$$

Why is it hard to invert?

- Let A be a SIS instance.
- Sample $\mathbf{x} \leftarrow U(\{-B, \dots, B\})^m$, set $\mathbf{y} = \mathbf{x}^T \cdot A$.
- Adversary gets A and y, and gives back a pre-image \mathbf{x}' of y.
- Claim: $\mathbf{x} \mathbf{x}'$ is a SIS_{β} solution for $\beta = 2B$ (with high probability).

	Signing from SIS	Improving efficiency	NTRU 0000	Conclusion OO
Proof of	knowledge for S	SIS		

Prover generates a blinding equation:

$$\mathbf{y}^T \cdot A = \mathbf{w}^T,$$

with y small. It sends w to Verifier.

After receiving w, Verifier sends a challenge $c \in \mathbb{Z}$ small to Prover.

Prover replies with $\mathbf{y} + c \cdot \mathbf{s}$.

Verifier checks whether

 $\mathbf{y} + c \cdot \mathbf{s}$ is small and $(\mathbf{y} + c \cdot \mathbf{s})^T A = \mathbf{w}^T + c \mathbf{t}^T$.

	Signing from SIS	Improving efficiency	NTRU	Conclusion
	0000000	000000000	0000	00
Proof of	knowledge for	SIS		

Proof of knowledge for SIS

Prover wants to convince **Verifier** that it knows **s** small s.t.: $\mathbf{s}^T \cdot \mathbf{A} = \mathbf{t}^T$, with \mathbf{A} and \mathbf{t} known.

Prover generates a blinding equation:

$$\mathbf{y}^{\mathcal{T}} \cdot \boldsymbol{A} = \mathbf{w}^{\mathcal{T}},$$

with **y** small. It sends **w** to Verifier.

After receiving w, Verifier sends a challenge $c \in \mathbb{Z}$ small to Prover.

Prover replies with $\mathbf{y} + c \cdot \mathbf{s}$.

Verifier checks whether

 $\mathbf{y} + c \cdot \mathbf{s}$ is small and $(\mathbf{y} + c \cdot \mathbf{s})^T A = \mathbf{w}^T + c \mathbf{t}^T$.

Challenge space is too small: **Prover** can guess *c* and succeed without knowing **s**.

Introduction Signing from SIS 0 00000000	Improving efficiency	NTRU 0000	Conclusion OO
Proof of knowledge for SI	ς		

Prover generates a blinding equation:

$$\mathbf{y}^T \cdot A = \mathbf{w}^T,$$

with y small. It sends w to Verifier.

After receiving w, Verifier sends a challenge $c \in \mathbb{Z}$ small to Prover.

```
Prover replies with \mathbf{y} + c \cdot \mathbf{s}.
```

Verifier checks whether

```
\mathbf{y} + c \cdot \mathbf{s} is small and (\mathbf{y} + c \cdot \mathbf{s})^T A = \mathbf{w}^T + c \mathbf{t}^T.
```

Challenge space is too small: **Prover** can guess *c* and succeed without knowing **s**.

	Signing from SIS	Improving efficiency	NTRU	Conclusion
	0000000	000000000	0000	00
Proof of	knowledge for	SIS		

Prover generates a blinding equation:

Б

$$\mathbf{y}^{\mathcal{T}} \cdot \boldsymbol{A} = \mathbf{w}^{\mathcal{T}},$$

with **y** small. It sends **w** to Verifier.

After receiving w, Verifier sends a challenge $c \in \mathbb{Z}$ small to Prover.

Prover replies with $\mathbf{y} + c \cdot \mathbf{s}$.

Verifier checks whether

 $\mathbf{y} + \mathbf{c} \cdot \mathbf{s}$ is small and $(\mathbf{y} + \mathbf{c} \cdot \mathbf{s})^T A = \mathbf{w}^T + \mathbf{c} \mathbf{t}^T$.

Challenge space is too small: **Prover** can guess *c* and succeed without knowing **s**.

	Signing from SIS	Improving efficiency	NTRU	Conclusion
	0000000	000000000	0000	00
Proof of	knowledge for	SIS		

Prover generates a blinding equation:

Б

$$\mathbf{y}^{\mathcal{T}} \cdot \boldsymbol{A} = \mathbf{w}^{\mathcal{T}},$$

with **y** small. It sends **w** to Verifier.

After receiving w, Verifier sends a challenge $c \in \mathbb{Z}$ small to Prover.

Prover replies with $\mathbf{y} + c \cdot \mathbf{s}$.

Verifier checks whether

$$\mathbf{y} + c \cdot \mathbf{s}$$
 is small and $(\mathbf{y} + c \cdot \mathbf{s})^T A = \mathbf{w}^T + c \mathbf{t}^T$.

Challenge space is too small: **Prover** can guess c and succeed without knowing **s**.

	Signing from SIS	Improving efficiency	NTRU	Conclusion
0	0000000	000000000	0000	00

SIS-based signature, 1st attempt

Verify: accept iff $\|\sigma_1\|$ is small and $\sigma_1^T A = \mathbf{w}^T + \mathbf{c}^T T$.

Introduction	Signing from SIS	Improving efficiency	NTRU	Conclusion
	00000000			

This signature scheme is insecure but can be fixed

Assume for simplicity that each coefficient of *S*, **c** and **y** is uniform in the interval [-B, +B], where $B \ll q$.

 $\sigma_1^T = \mathbf{y}^T + \mathbf{c}^T \cdot S$ conditioned on **c** and *S*, has center $\mathbf{c}^T \cdot S$.

Introduction	Signing from SIS	Improving efficiency	NTRU	Conclusion
	00000000	000000000	0000	00

This signature scheme is insecure but can be fixed

Assume for simplicity that each coefficient of *S*, **c** and **y** is uniform in the interval [-B, +B], where $B \ll q$.

 $\sigma_1^T = \mathbf{y}^T + \mathbf{c}^T \cdot S$ conditioned on **c** and *S*, has center $\mathbf{c}^T \cdot S$.

Fix: use rejection sampling [Lyu09,Lyu12]

- For uniform distributions in intervals, rejection is simple
- Need to restart signing process, if rejection occurs

Security	proof intuition	(in the random oracle model)		
	00000000	000000000	0000	00
Introduction	Signing from SIS	Improving efficiency	NTRU	Conclusion

To answer signing queries, the challenger simulates by sampling σ_1 and **c** from their distributions, and **defines**

$$H(A, T, \mathbf{w} = \sigma_1 A - \mathbf{c} T, M) := \mathbf{c}$$

\Rightarrow No need for a signing key anymore!

By **rewinding** a forging algorithm A and **reprogramming** H, we obtain:

$$\sigma_1^T A = \mathbf{w}^T + \mathbf{c}^T T$$

$$\sigma_1'^T A = \mathbf{w}^T + \mathbf{c'}^T T$$

Subtracting gives a SIS solution to instance $(A \parallel T)$.

This is Schnorr's signature, and its proof, adapted to SIS!

Security	proof intuition	(in the random oracle model)		
	00000000			
	Signing from SIS	Improving efficiency	NTRU	Conclusion

To answer signing queries, the challenger simulates by sampling σ_1 and **c** from their distributions, and **defines**

$$H(A, T, \mathbf{w} = \sigma_1 A - \mathbf{c} T, M) := \mathbf{c}$$

 \Rightarrow No need for a signing key anymore!

By **rewinding** a forging algorithm A and **reprogramming** H, we obtain:

$$\sigma_1^T A = \mathbf{w}^T + \mathbf{c}^T T$$

$$\sigma_1'^T A = \mathbf{w}^T + \mathbf{c'}^T T$$

Subtracting gives a SIS solution to instance $(A \parallel T)$.

This is Schnorr's signature, and its proof, adapted to SIS!

Security	proof intuition	(in the random oracle model)		
	00000000			
	Signing from SIS	Improving efficiency	NTRU	Conclusion

To answer signing queries, the challenger simulates by sampling σ_1 and **c** from their distributions, and **defines**

$$H(A, T, \mathbf{w} = \sigma_1 A - \mathbf{c} T, M) := \mathbf{c}$$

 \Rightarrow No need for a signing key anymore!

By **rewinding** a forging algorithm A and **reprogramming** H, we obtain:

$$\sigma_1^T A = \mathbf{w}^T + \mathbf{c}^T T$$

$$\sigma_1'^T A = \mathbf{w}^T + \mathbf{c'}^T T$$

Subtracting gives a SIS solution to instance $(A \parallel T)$.

This is Schnorr's signature, and its proof, adapted to SIS!

	Signing from SIS	Improving efficiency	NTRU	Conclusion
	0000000			
Eurthor				
ruruner r	emarks			

- Setting parameters requires work. Compromises between:
 - Security
 - Probability of rejection (and hence signing time)
 - Size of signatures
- Further improvement: use LWE rather than SIS
 - Shorter $S \Rightarrow$ shorter $\mathbf{y} \Rightarrow$ smaller signatures
 - Security proof can be made tight
 - Security proof can be done in the quantum random oracle model (eprint 2015/755)
- Precise comparison to GPV-type signatures.
- Efficient signature without the random oracle heuristic?
- Efficient Schnorr-type signature with security proof in the quantum random oracle model?

	Signing from SIS	Improving efficiency	NTRU	Conclusion
	0000000			
Eurthar r	omorles			
i urther r	emarks			

- Setting parameters requires work. Compromises between:
 - Security
 - Probability of rejection (and hence signing time)
 - Size of signatures
- Further improvement: use LWE rather than SIS
 - Shorter $S \Rightarrow$ shorter $\mathbf{y} \Rightarrow$ smaller signatures
 - Security proof can be made tight
 - Security proof can be done in the quantum random oracle model (eprint 2015/755)
- Precise comparison to GPV-type signatures.
- Efficient signature without the random oracle heuristic?
- Efficient Schnorr-type signature with security proof in the quantum random oracle model?

	Signing from SIS	Improving efficiency	NTRU	Conclusion
	0000000	000000000	0000	00
D 1 C				
Plan for	this lecture			

- Signing from SIS
- **@** Improving efficiency
- INTRU INTRU

	Signing from SIS	Improving efficiency	NTRU	Conclusion
Q	0000000		0000	00
lt's all slo	W			

Public key contains a uniformly sampled matrix A.

- Share A among users (but maybe an adversary can work on A to break all keys)
- Store only the seed of the randomness used to sample A.

Encrypting, Signing and Verifying require matrix-vector multiplication. Encryption is only for bits.

Signing from SIS	Improving efficiency	NTRU	Conclusion
0000000	000000000	0000	00

Replace matrices by structured matrices

	Signing from SIS	Improving efficiency	NTRU 0000	Conclusion OO
Ring-LWE,	Module-LWE			

Structured matrices \Leftrightarrow Polynomials

This allows us to exploit fast polynomial arithmetic.

The same encryption scheme as the one we saw work. But:

- (Matrix \times vector) is replaced by (polynomial \times polynomial)
- Encryption of a bit is replaced by encryption of a binary polynomial
- \Rightarrow Quasi-optimal efficiency: handling *n* plaintext bits costs $\widetilde{O}(n)$.

What about security?

Introduction	Signing from SIS	Improving efficiency	NTRU	Conclusion
		000000000		
Ideal / Pol	vnomial-SIS			

Let $q \ge 2$, $\beta > 0$, m > 0. Let $f = x^n + 1 \in \mathbb{Z}[x]$ with $n = 2^k$.

$\mathsf{Ideal}-\mathsf{SIS}^{f}_{m,q,\beta}$

Given (a_1, \ldots, a_m) uniform in $\mathbb{Z}_q[x]/f$, find $x_1, \ldots, x_m \in \mathbb{Z}[x]/f$ s.t.:

- $\sum_i x_i a_i = 0 \mod q$,
- $0 < ||\mathbf{x}|| \le \beta$, where $\mathbf{x} \in \mathbb{Z}^{mn}$ consists in the coeffs of the x_i 's.

This is SIS, with matrix **A** made of stacked blocks $\operatorname{Rot}_f(a_i)$. The *j*-th row of $\operatorname{Rot}_f(a_i)$ is made of the coefficients of $x^{j-1} \cdot a_i \mod f$.

Why this *f*?

f is irreducible $\Rightarrow \mathbb{Q}[x]/f$ is a field. For q = 1 [2n] prime: $\mathbb{Z}_q[x]/f \simeq \mathbb{Z}_q \times \ldots \times \mathbb{Z}_q$.

Introduction	Signing from SIS	Improving efficiency	NTRU	Conclusion
		000000000		
Ideal / Pol	vnomial-SIS			
	ynonnar 515			

Let $q \ge 2$, $\beta > 0$, m > 0. Let $f = x^n + 1 \in \mathbb{Z}[x]$ with $n = 2^k$.

$\mathsf{Ideal}\text{-}\mathsf{SIS}^{f}_{m,q,\beta}$

Given (a_1, \ldots, a_m) uniform in $\mathbb{Z}_q[x]/f$, find $x_1, \ldots, x_m \in \mathbb{Z}[x]/f$ s.t.:

- $\sum_i x_i a_i = 0 \mod q$,
- $0 < ||\mathbf{x}|| \le \beta$, where $\mathbf{x} \in \mathbb{Z}^{mn}$ consists in the coeffs of the x_i 's.

This is SIS, with matrix **A** made of stacked blocks $\operatorname{Rot}_f(a_i)$. The *j*-th row of $\operatorname{Rot}_f(a_i)$ is made of the coefficients of $x^{j-1} \cdot a_i \mod f$.

Why this f?

f is irreducible $\Rightarrow \mathbb{Q}[x]/f$ is a field. For q = 1 [2n] prime: $\mathbb{Z}_q[x]/f \simeq \mathbb{Z}_q \times \ldots \times \mathbb{Z}_q$.

Introduction	Signing from SIS	Improving efficiency	NTRU	Conclusion
	0000000	000000000	0000	00
Ideal / Pol	vnomial-SIS			
	ynonnar ere			

Let $q \ge 2$, $\beta > 0$, m > 0. Let $f = x^n + 1 \in \mathbb{Z}[x]$ with $n = 2^k$.

$\mathsf{Ideal}\operatorname{-SIS}^{f}_{m,q,\beta}$

Given (a_1, \ldots, a_m) uniform in $\mathbb{Z}_q[x]/f$, find $x_1, \ldots, x_m \in \mathbb{Z}[x]/f$ s.t.:

- $\sum_i x_i a_i = 0 \mod q$,
- $0 < ||\mathbf{x}|| \le \beta$, where $\mathbf{x} \in \mathbb{Z}^{mn}$ consists in the coeffs of the x_i 's.

This is SIS, with matrix **A** made of stacked blocks $\operatorname{Rot}_f(a_i)$. The *j*-th row of $\operatorname{Rot}_f(a_i)$ is made of the coefficients of $x^{j-1} \cdot a_i \mod f$.

Why this f?

f is irreducible $\Rightarrow \mathbb{Q}[x]/f$ is a field. For q = 1 [2n] prime: $\mathbb{Z}_q[x]/f \simeq \mathbb{Z}_q \times \ldots \times \mathbb{Z}_q$.

	Signing from SIS	Improving efficiency	NTRU	Conclusion
		000000000		
Ideal / Pol	vnomial-IWE	1551×100		

Let $q \ge 2$, $\alpha > 0$. Let $f = x^n + 1 \in \mathbb{Z}[x]$ with $n = 2^k$.

Search P-LWE^f

Given (a_1, \ldots, a_m) and $(a_1 \cdot s + e_1, \ldots, a_m \cdot s + e_m)$, find s.

- s uniform in $\mathbb{Z}_q[x]/f$
- All a_i 's uniform in $\mathbb{Z}_q[x]/f$
- The coefficients of the e_i 's are sampled from $\nu_{\alpha q}$

Hardness	of P-SIS / P-I	WE		
		000000000		
	Signing from SIS	Improving efficiency	NTRU	Conclusion

There is a reduction from SVP_{γ} for ideals of $\mathbb{Z}[x]/f$ to P-SIS^{*f*}. The approximation factor γ is proportional to β .

There is a quantum reduction from SVP_{γ} for ideals of $\mathbb{Z}[x]/f$ to search P-LWE^{*f*}. The approximation factor γ is proportional to $1/\alpha$.

- Vacuous if ${
 m SVP}_\gamma$ for ideals of ${\mathbb Z}[x]/f$ is easy
- Ideal-SVP $_{\gamma}$ is actually easier than SVP $_{\gamma}$! [CDW17,PHS19], 2016/885, 2019/215

	Signing from SIS	Improving efficiency 000000●000	NTRU 0000	Conclusion OO
Hardness	of P-SIS / P-I	WE		

There is a reduction from SVP_{γ} for ideals of $\mathbb{Z}[x]/f$ to P-SIS^{*f*}. The approximation factor γ is proportional to β .

There is a quantum reduction from SVP_{γ} for ideals of $\mathbb{Z}[x]/f$ to search P-LWE^{*f*}. The approximation factor γ is proportional to $1/\alpha$.

- Vacuous if SVP_γ for ideals of $\mathbb{Z}[x]/f$ is easy
- Ideal-SVP $_{\gamma}$ is actually easier than SVP $_{\gamma}$! [CDW17,PHS19], 2016/885, 2019/215

	Signing from SIS	Improving efficiency	NTRU 0000	Conclusion OO
Ring-LWE	[LPR10]			
Let $q \ge 2$, K: number fi \mathcal{O}_{K} : its ring $\sigma_{1}, \ldots, \sigma_{n}$: the second seco	$lpha > 0, \ f \in \mathbb{Z}[x]$ eld defined by $f.$ of integers. ne Minkowski embed	monic irreducible of de $\mathcal{O}_{\mathcal{K}}$	egree <i>n</i> . ^V : its dual ideal.	
As complex end the σ_k 's give	mbeddings come by a bijection σ from .	pairs of conjugates, $\mathcal{K}_{\mathbb{R}}=\mathcal{K}\otimes_{\mathbb{Q}}\mathbb{R}$ to $\mathbb{R}^n.$		

Search Ring-LWE⁴

Given
$$(a_1, \ldots, a_m)$$
 and $(a_1 \cdot s + e_1, \ldots, a_m \cdot s + e_m)$, find s.

- s uniform in $\mathcal{O}_K^{\vee}/q\mathcal{O}_K^{\vee}$
- All a_i 's uniform in $\mathcal{O}_K/q\mathcal{O}_K$
- The $\sigma(e_i)$'s are sampled from $u_{lpha q}$

Decision Ring-LWE: distinguish uniform (a_i, b_i) 's from (a_i, b_i) 's as above

	Signing from SIS	Improving efficiency	NTRU 0000	Conclusion OO
Ring-LWE	[LPR10]			
Let $q \ge 2$,	$lpha > 0$, $f \in \mathbb{Z}[x]$ r	monic irreducible of de	gree <i>n</i> .	
K: number f \mathcal{O}_K : its ring $\sigma_1, \ldots, \sigma_n$: t	ield defined by <i>f</i> . of integers. he Minkowski embed	$\mathcal{O}_K{}^\vee$ dings.	: its dual ideal.	
As complex σ_k 's give	embeddings come by σ a bijection σ from P	pairs of conjugates, $\mathcal{K}_{\mathbb{R}} = \mathcal{K} \otimes_{\mathbb{O}} \mathbb{R}$ to \mathbb{R}^n .		

Search Ring-LWE^f

Given (a_1, \ldots, a_m) and $(a_1 \cdot s + e_1, \ldots, a_m \cdot s + e_m)$, find s.

- *s* uniform in $\mathcal{O}_{K}^{\vee}/q\mathcal{O}_{K}^{\vee}$
- All a_i 's uniform in $\mathcal{O}_K/q\mathcal{O}_K$
- The $\sigma(e_i)$'s are sampled from $u_{lpha q}$

Decision Ring-LWE: distinguish uniform (a_i, b_i) 's from (a_i, b_i) 's as above

	Signing from SIS	Improving efficiency	NTRU 0000	Conclusion OO
Ring-LWE	[LPR10]			
Let $q\geq 2$,	$lpha > 0$, $f \in \mathbb{Z}[x]$ i	monic irreducible of de	egree <i>n</i> .	
$K: number \\ \mathcal{O}_{K}: its ring \\ \sigma_1, \ldots, \sigma_n: f$	field defined by <i>f</i> . of integers. :he Minkowski embed	\mathcal{O}_K	∨: its dual ideal.	
As complex the σ_k 's give	embeddings come by σ a bijection σ from h	pairs of conjugates, $K_{\mathbb{R}} = K \otimes_{\mathbb{O}} \mathbb{R}$ to \mathbb{R}^n .		

Search Ring-LWE^f

Given (a_1, \ldots, a_m) and $(a_1 \cdot s + e_1, \ldots, a_m \cdot s + e_m)$, find s.

- *s* uniform in $\mathcal{O}_K^{\vee}/q\mathcal{O}_K^{\vee}$
- All a_i 's uniform in $\mathcal{O}_K/q\mathcal{O}_K$
- The $\sigma(e_i)$'s are sampled from $\nu_{\alpha q}$

Decision Ring-LWE: distinguish uniform (a_i, b_i) 's from (a_i, b_i) 's as above

Introduction	Signing from SIS	Improving efficiency	NTRU	Conclusion
		0000000000		
Hardness of	· Ring-IWE			

LPR10 : For all f, there is a reduction from ApproxSVP for \mathcal{O}_{K} -ideals to search Ring-LWE^f.

For f cyclotomic, there is a reduction from search to decision Ring-LWE^f.

PRS17 : For all f, there is a reduction from ApproxSVP for \mathcal{O}_{K} -ideals to decision Ring-LWE^f.

	Signing from SIS	Improving efficiency	NTRU	Conclusion
		000000000		
I he land	scape is comple	EX		

Selected open problems

- What are the precise relationships between P-LWE, Ring-LWE and Module-LWE? [AD17,RSW18]
- What do the attacks on Ideal-SVP mean? [CDW17,PHS19]
- Is the relevant worst-case problem SVP for $\mathcal{O}_{\mathcal{K}}$ -modules? [LS15]
- Can we go from a K to a K'? [GHPS13]
- Are some K than others? See Wouter's talk!
- What to think about MP-LWE? [Lyubashevsky16,RSSS17]

It matters! All these Round 2 NIST candidates rely on algebraic lattices:

Dilithium, Falcon, Tesla,

Kyber, LAC, NewHope, NTRU, NTRUPrime, Round5, SABER, ThreeBears

	Signing from SIS	Improving efficiency	NTRU	Conclusion
		000000000		
I he land	scape is comple	EX		

Selected open problems

- What are the precise relationships between P-LWE, Ring-LWE and Module-LWE? [AD17,RSW18]
- What do the attacks on Ideal-SVP mean? [CDW17,PHS19]
- Is the relevant worst-case problem SVP for $\mathcal{O}_{\mathcal{K}}$ -modules? [LS15]
- Can we go from a K to a K'? [GHPS13]
- Are some K than others? See Wouter's talk!
- What to think about MP-LWE? [Lyubashevsky16,RSSS17]

It matters! All these Round 2 NIST candidates rely on algebraic lattices:

Dilithium, Falcon, Tesla,

Kyber, LAC, NewHope, NTRU, NTRUPrime, Round5, SABER, ThreeBears

	Signing from SIS	Improving efficiency	NTRU ●000	Conclusion OO
Plan for t	this lecture			

- Signing from SIS
- Improving efficiency
- INTRU INTRU

	Signing from SIS	Improving efficiency	NTRU 0●00	Conclusion OO
NTRU — a	personal varia	ant of [HPS98]		

Notations: $R = \mathbb{Z}[x]/(x^n + 1)$ $R_q = \mathbb{Z}_q[x]/(x^n + 1)$

Keygen: Sample f, g in R with coeffs in $\{-1, 0, 1\}$. $sk = f, pk = h := g/f \mod q$.

Encrypt: $M \in R$ with coeffs in $\{0, 1\}$. Sample s and e small. $C = 2(h \cdot s + e) + M \mod q.$

Decrypt: $(C \cdot f \mod q) \mod 2$ is $M \cdot f \mod 2$ Divide by $f \mod 2$.

> (This requires f invertible mod q and mod 2) Correct as long as $|2(g \cdot s + e \cdot f)| < q/2$ with probability ≈ 1

	Signing from SIS	Improving efficiency	NTRU O●OO	Conclusion OO
NTRU —	a personal va	riant of [HPS98]	

Notations: $R = \mathbb{Z}[x]/(x^n + 1)$ $R_q = \mathbb{Z}_q[x]/(x^n + 1)$

Keygen: Sample f, g in R with coeffs in $\{-1, 0, 1\}$. $sk = f, pk = h := g/f \mod q.$

Encrypt: $M \in R$ with coeffs in $\{0, 1\}$. Sample s and e small. $C = 2(h \cdot s + e) + M \mod q.$

Decrypt: $(C \cdot f \mod q) \mod 2$ is $M \cdot f \mod 2$ Divide by $f \mod 2$.

> (This requires f invertible mod q and mod 2) Correct as long as $|2(g \cdot s + e \cdot f)| < q/2$ with probability ≈ 1

	Signing from SIS	Improving efficiency	NTRU O●OO	Conclusion OO
NTRU —	- a personal va	riant of [HPS98]	

Notations: $R = \mathbb{Z}[x]/(x^n + 1)$ $R_q = \mathbb{Z}_q[x]/(x^n + 1)$

Keygen: Sample f, g in R with coeffs in $\{-1, 0, 1\}$. $sk = f, pk = h := g/f \mod q.$

Encrypt: $M \in R$ with coeffs in $\{0, 1\}$. Sample s and e small. $C = 2(h \cdot s + e) + M \mod q.$

Decrypt: $(C \cdot f \mod q) \mod 2$ is $M \cdot f \mod 2$ Divide by $f \mod 2$.

> (This requires f invertible mod q and mod 2) Correct as long as $|2(g \cdot s + e \cdot f)| < q/2$ with probability ≈ 1

	Signing from SIS	Improving efficiency		Conclusion
0	0000000	000000000	0000	
The desig	gn is versatile			

- $f = x^n + 1$, q and "2" may be changed
- Use diverse types of rounding or noises
- Use small or big coefficients for f, g, s, e

Security boils down to two intractability assumptions:

- Indistinguishability of $h = g/f \mod q$ from uniform in R_q . May be waived, but at a significant cost [SS11] Can be done efficiently for large q [ABD16,CJL16,KF17]
- Indistinguishability of ciphertext from uniform, i.e., Ring-LWE-like.

	Signing from SIS	Improving efficiency		Conclusion
0	0000000	000000000	0000	
The desig	gn is versatile			

- $f = x^n + 1$, q and "2" may be changed
- Use diverse types of rounding or noises
- Use small or big coefficients for f, g, s, e

Security boils down to two intractability assumptions:

- Indistinguishability of $h = g/f \mod q$ from uniform in R_q . May be waived, but at a significant cost [SS11] Can be done efficiently for large q [ABD16,CJL16,KF17]
- Indistinguishability of ciphertext from uniform, i.e., Ring-LWE-like.

	Signing from SIS	Improving efficiency	NTRU	Conclusion
	0000000	000000000	0000	00
My favor	ite NTRU oper	n problem		

Breaking the key is solving unique-SVP for a rank-2 module lattice.

 $M := \{x_1, x_2 \in R^2 : x_1 \cdot h = x_2 \bmod q\}$

• For a uniform *h*, we would expect $\lambda_1(M) \approx \sqrt{n \cdot q}$

• But $(f,g) \in M$ is shorter than that

For arbitrary lattices, BDD reduces to unique-SVP in 1 more dimension, and unique-SVP reduces to BDD in same dimension.

Is unique-SVP for rank-2 modules computationally closer to:

BDD in rank-1 modules, i.e., ideal lattices?

(some weaknesses are known)

or BDD in rank-2 modules?

(some equivalence with Ring-LWE known [LS15,AD17])

	Signing from SIS	Improving efficiency	NTRU	Conclusion
	0000000	000000000	0000	00
My favor	ite NTRU oper	problem		

Breaking the key is solving unique-SVP for a rank-2 module lattice.

$$M := \{x_1, x_2 \in R^2 : x_1 \cdot h = x_2 \bmod q\}$$

- For a uniform *h*, we would expect $\lambda_1(M) \approx \sqrt{n \cdot q}$
- But $(f,g) \in M$ is shorter than that

For arbitrary lattices, BDD reduces to unique-SVP in 1 more dimension, and unique-SVP reduces to BDD in same dimension.

Is unique-SVP for rank-2 modules computationally closer to:

BDD in rank-1 modules, i.e., ideal lattices?

(some weaknesses are known)

• or BDD in rank-2 modules?

(some equivalence with Ring-LWE known [LS15,AD17])

	Signing from SIS	Improving efficiency	NTRU 0000	Conclusion ●O
Plan for th	is lecture			

- Signing from SIS
- Improving efficiency
- INTRU INTRU

14/ .				
0	0000000	000000000	0000	00
Introduction	Signing from SIS	Improving efficiency	NTRU	Conclusion

Wrapping up

Lattices are conjectured to provide hard worst-case problems.

SIS/LWE are a-c variants no easier than some hard w-c lattice problems.

- There is no fundamental weakness in SIS/LWE.
- The reductions are not meant for setting parameters, but for ensuring that there is no fundamental weakness.

SIS and LWE can be viewed linear algebra problems.

- Leads to simple cryptographic design.
- Allows advanced cryptographic constructions.
- To get faster schemes, use algebraic lattices.
 - Does it impact computational intractability?
 - Plenty of problems involving algebraic number theory.

Introduction	Signing from SIS	Improving efficiency	NTRU	Conclusion
				00
Wranning	σ un			

Lattices are conjectured to provide hard worst-case problems.

SIS/LWE are a-c variants no easier than some hard w-c lattice problems.

- There is no fundamental weakness in SIS/LWE.
- The reductions are not meant for setting parameters, but for ensuring that there is no fundamental weakness.

SIS and LWE can be viewed linear algebra problems.

- Leads to simple cryptographic design.
- Allows advanced cryptographic constructions.
- To get faster schemes, use algebraic lattices.
 - Does it impact computational intractability?
 - Plenty of problems involving algebraic number theory.

Introduction	Signing from SIS	Improving efficiency	NTRU	Conclusion		
				00		
Wrapping	ະເມດ					

Lattices are conjectured to provide hard worst-case problems.

SIS/LWE are a-c variants no easier than some hard w-c lattice problems.

- There is no fundamental weakness in SIS/LWE.
- The reductions are not meant for setting parameters, but for ensuring that there is no fundamental weakness.

SIS and LWE can be viewed linear algebra problems.

- Leads to simple cryptographic design.
- Allows advanced cryptographic constructions.

To get faster schemes, use algebraic lattices.

- Does it impact computational intractability?
- Plenty of problems involving algebraic number theory.

	Signing from SIS	Improving efficiency	NTRU	Conclusion
				00
VVrapping	σun			

Lattices are conjectured to provide hard worst-case problems.

SIS/LWE are a-c variants no easier than some hard w-c lattice problems.

- There is no fundamental weakness in SIS/LWE.
- The reductions are not meant for setting parameters, but for ensuring that there is no fundamental weakness.

SIS and LWE can be viewed linear algebra problems.

- Leads to simple cryptographic design.
- Allows advanced cryptographic constructions.

To get faster schemes, use algebraic lattices.

- Does it impact computational intractability?
- Plenty of problems involving algebraic number theory.