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Plan for this lecture

@ Signing from SIS
@ Improving efficiency
@ NTRU
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Signing from SIS
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The Small Integer Solution Problem
Given a uniform A € Z7", find x € Z™ \ 0 such that:

x| < B and x" -A=0mod gq.
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Signing from SIS
O®@000000

Design principle

Start from a one-way function x — y = f(x).
@ Signing key: x
o Verification key: y

The signer uses a zero-knowledge proof that it knows x s.t. f(x) = y.

The random oracle allows to:

@ Make the proof non-interactive

@ Embed the message in the proof challenge
This is the (heuristic) Fiat-Shamir transform.
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Signing from SIS
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Which one-way function to start from?

The Short Integer Solution Problem
Given a uniform A € Zg’x”, find x € Z™ \ 0 such that:

x| <8 and x"-A=0mod q.

We want a function that is easy to evaluate and (SIS-)hard to invert.
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Which one-way function to start from?

The Short Integer Solution Problem
Given a uniform A € Zg’x”, find x € Z™ \ 0 such that:

x| <8 and x"-A=0mod q.

We want a function that is easy to evaluate and (SIS-)hard to invert.

£ {-B,...,B}" — Zg
A X — x'Amod g

Why is it hard to invert?
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Signing from SIS
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Which one-way function to start from?

The Short Integer Solution Problem
Given a uniform A € Zg’x”, find x € Z™ \ 0 such that:

x| <8 and x"-A=0mod q.

We want a function that is easy to evaluate and (SIS-)hard to invert.

f: {-B,...,B}" — . Zg
X — x'Amodq
Why is it hard to invert?
@ Let A be a SIS instance.
Sample x <= U({—B,...,B})™, sety =x" - A.
Adversary gets A and y, and gives back a pre-image x’ of y.

e o6 o

Claim: x — x’ is a SISg solution for 5 = 2B (with high probability).
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Signing from SIS
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Proof of knowledge for SIS

Prover wants to convince Verifier that it knows s small s.t.:
s"-A=1t", with A and t known. }
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Signing from SIS
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Proof of knowledge for SIS

Prover wants to convince Verifier that it knows s small s.t.:
sT-A=1t", with A and t known.

Prover generates a blinding equation:

yT'A:WTa

with y small. It sends w to Verifier.

Damien Stehlé Introduction to lattice-based cryptography



Signing from SIS
[e]e]e] lelelele]

Proof of knowledge for SIS

Prover wants to convince Verifier that it knows s small s.t.:
sT-A=1t", with A and t known. J

Prover generates a blinding equation:
yT A= WT?
with y small. It sends w to Verifier.

After receiving w, Verifier sends a challenge ¢ € Z small to Prover.
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Proof of knowledge for SIS

Prover wants to convince Verifier that it knows s small s.t.:
sT-A=1t", with A and t known. J

Prover generates a blinding equation:
yT A= WT?
with y small. It sends w to Verifier.

After receiving w, Verifier sends a challenge ¢ € Z small to Prover.

Prover replies with y + ¢ - s.
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Signing from SIS
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Proof of knowledge for SIS

Prover wants to convince Verifier that it knows s small s.t.:
sT-A=1t", with A and t known. J

Prover generates a blinding equation:
y A=w',
with y small. It sends w to Verifier.
After receiving w, Verifier sends a challenge ¢ € Z small to Prover.

Prover replies with y + ¢ - s.

Verifier checks whether

y+c-s issmalland (y+c-s)’A=w' +ct’.

Challenge space is too small:
Prover can guess ¢ and succeed without knowing s.
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Signing from SIS
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SIS-based signature, 1st attempt

Verify: accept iff ||o1]| is small and o] A=w' +¢'T.
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Signing from SIS
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This signature scheme is insecure but can be fixed

Assume for simplicity that each coefficient of S, c and y is uniform in the
interval [-B,+B], where B < q.

O’lT =y’ +c’ .S conditioned on c and S, has center ¢” - S.
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Signing from SIS
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This signature scheme is insecure but can be fixed

Assume for simplicity that each coefficient of S, c and y is uniform in the
interval [-B,+B], where B < q.

O’lT =y’ +c’ .S conditioned on c and S, has center ¢” - S.

Fix: use rejection sampling  [Lyu09,Lyu12]

e "l/ . J: h.“.f/lam
Ls’\;;é‘a\hw ,g’/rg/’fs
| . v
o IS

@ For uniform distributions in intervals, rejection is simple

o Need to restart signing process, if rejection occurs

Damien Stehlé
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Signing from SIS
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SeCU r|ty pI’OOf |ntU|t|on (in the random oracle model)

To answer signing queries, the challenger simulates by sampling o7 and ¢
from their distributions, and defines

H(A, T,w=0A—cT,M):=c

= No need for a signing key anymore!
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Signing from SIS
00000080

SeCU r|ty pI’OOf |ntU|t|on (in the random oracle model)

To answer signing queries, the challenger simulates by sampling o7 and ¢
from their distributions, and defines

H(A, T,w=0A—cT,M):=c
= No need for a signing key anymore!
By rewinding a forging algorithm A and reprogramming H, we obtain:

oA = wl+c'T

.
ofTA = w4+’ T

Subtracting gives a SIS solution to instance (A|| T).
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Signing from SIS
00000080

SeCU r|ty pI’OOf |ntU|t|on (in the random oracle model)

To answer signing queries, the challenger simulates by sampling o7 and ¢
from their distributions, and defines

H(A, T,w=0A—cT,M):=c
= No need for a signing key anymore!
By rewinding a forging algorithm A and reprogramming H, we obtain:

oA = wl+c'T

.
ofTA = w4+’ T

Subtracting gives a SIS solution to instance (A|| T).

This is Schnorr's signature, and its proof, adapted to SIS! J

Damien Stehlé Introduction to lattice-based cryptography 20/03/2019



Signing from SIS
O000000e

Further remarks

@ Setting parameters requires work. Compromises between:
o Security
o Probability of rejection (and hence signing time)
o Size of signatures

@ Further improvement: use LWE rather than SIS

o Shorter S = shorter y = smaller signatures

e Security proof can be made tight

o Security proof can be done in the quantum random oracle model
(eprint 2015/755)
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Signing from SIS
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Further remarks

@ Setting parameters requires work. Compromises between:
o Security
o Probability of rejection (and hence signing time)
o Size of signatures

@ Further improvement: use LWE rather than SIS

o Shorter S = shorter y = smaller signatures

e Security proof can be made tight

o Security proof can be done in the quantum random oracle model
(eprint 2015/755)

Precise comparison to GPV-type signatures.

Efficient signature without the random oracle heuristic?

Efficient Schnorr-type signature with security proof in the quantum
random oracle model?
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Plan for this lecture

@ Signing from SIS
Q@ Improving efficiency
@ NTRU

Damien Stehlé Introduction to lattice-based cryptography



Improving efficiency
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It's all slow

Public key contains a uniformly sampled matrix A.

@ Share A among users
(but maybe an adversary can work on A to break all keys)

@ Store only the seed of the randomness used to sample A.

Encrypting, Signing and Verifying require matrix-vector multiplication.

Encryption is only for bits.
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Improving efficiency
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Replace matrices by structured matrices

7
V7
vy
A7y

\\

LwWE R-LWE M-LWE
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Improving efficiency
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Ring-LWE, Module-LWE

Structured matrices < Polynomials

This allows us to exploit fast polynomial arithmetic.

The same encryption scheme as the one we saw work. But:
@ ( Matrix x vector ) is replaced by (polynomial x polynomial)
@ Encryption of a bit is replaced by encryption of a binary polynomial
= Quasi-optimal efficiency: handling n plaintext bits costs a(n)

What about security?
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Improving efficiency

[e]e]e]e] lelele]ele)

|deal /Polynomial-SIS [LM06,PR06]

Let g>2,3>0 m>0. Let f = x" +1 € Z[x] with n = 2.

IdeaI—SISfmqﬂ

Given (a1, ...,am) uniform in Zy[x]/f, find x1,...,xm € Z[x]/f s.t.:
@ ) .xiaj =0mod q,

@ 0 < ||x|| < B, where x € Z™ consists in the coeffs of the x;'s.
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[e]e]e]e] lelele]ele)

|deal /Polynomial-SIS [LM06,PR06]

Let g>2,3>0 m>0. Let f = x" +1 € Z[x] with n = 2.

IdeaI—SISfmqﬂ

Given (a1, ...,am) uniform in Zy[x]/f, find x1,...,xm € Z[x]/f s.t.:
@ ) .xiaj =0mod q,
@ 0 < ||x|| < B, where x € Z™ consists in the coeffs of the x;'s.

This is SIS, with matrix A made of stacked blocks Rotr(a;).
The j-th row of Rotr(a;) is made of the coefficients of x)~1 - a; mod f.
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[e]e]e]e] lelele]ele)

|deal /Polynomial-SIS [LM06,PR06]

Let g>2,3>0 m>0. Let f = x" +1 € Z[x] with n = 2.

IdeaI—SISfmqﬂ

Given (a1, ...,am) uniform in Zy[x]/f, find x1,...,xm € Z[x]/f s.t.:
@ ) .xiaj =0mod q,

@ 0 < ||x|| < B, where x € Z™ consists in the coeffs of the x;'s.

This is SIS, with matrix A made of stacked blocks Rotr(a;).
The j-th row of Rotr(a;) is made of the coefficients of x)~1 - a; mod f.

f is irreducible = Q[x]/f is a field.
For g =1 [2n] prime: Zg[x]/f ~ Zg X ... X Zq.

Damien Stehlé Introduction to lattice-based cryptography 20/03/2019



Improving efficiency
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|deal /Polynomial-LWE  [SSTX09]

Let g >2, o> 0. Let f = x" + 1 € Z[x] with n = 2.

Given (a1,...,am) and (a1 - s+ e1,...,am S+ €ep), find s.

@ s uniform in Zg[x]/f
e All a;'s uniform in Zg[x]/f

@ The coefficients of the e;'s are sampled from v4q
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Improving efficiency
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Hardness of P-SIS / P-LWE

There is a reduction from SVP,, for ideals of Z[x]/f to P-SIS.
The approximation factor y is proportional to 3.

There is a quantum reduction from SVP,, for ideals of Z[x]/f to search
P-LWE'.
The approximation factor «y is proportional to 1/a.
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Improving efficiency
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Hardness of P-SIS / P-LWE

There is a reduction from SVP,, for ideals of Z[x]/f to P-SIS.
The approximation factor y is proportional to 3.

There is a quantum reduction from SVP,, for ideals of Z[x]/f to search
P-LWE'.
The approximation factor «y is proportional to 1/a.

e Vacuous if SVP, for ideals of Z[x]/f is easy

o Ideal-SVP, is actually easier than SVP,!
[CDW17,PHS19], 2016/885, 2019/215

Damien Stehlé Introduction to lattice-based cryptography 20/03/2019



Improving efficiency
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Ring-LWE [LPR10]

Let g > 2, a > 0, f € Z[x] monic irreducible of degree n.

K: number field defined by f.

Ok: its ring of integers. OkV: its dual ideal.
01,...,0n: the Minkowski embeddings.

As complex embeddings come by pairs of conjugates,

the oy's give a bijection o from Kg = K®g R to R".
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Ring-LWE [LPR10]

Let g > 2, a > 0, f € Z[x] monic irreducible of degree n.

K: number field defined by f.

Ok: its ring of integers. OkV: its dual ideal.
01,...,0n: the Minkowski embeddings.

As complex embeddings come by pairs of conjugates,

the oy's give a bijection o from Kg = K®g R to R".

Search Ring-LWEf

Given (a1,...,am) and (a1 s+ e,...,am S+ ep), find s.
e s uniform in Ox"/qOk"
@ All a;'s uniform in Ok /qOk
@ The o(e;)'s are sampled from v,q
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Improving efficiency
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Ring-LWE [LPR10]

Let g > 2, a > 0, f € Z[x] monic irreducible of degree n.

K: number field defined by f.

Ok: its ring of integers. OkV: its dual ideal.
01,...,0n: the Minkowski embeddings.

As complex embeddings come by pairs of conjugates,

the oy's give a bijection o from Kg = K®g R to R".

Search Ring-LWEf

Given (a1,...,am) and (a1 s+ e,...,am S+ ep), find s.
e s uniform in Ox"/qOk"
@ All a;'s uniform in Ok /qOk
@ The o(e;)'s are sampled from v,q

Decision Ring-LWE: distinguish uniform (a;, b;)'s from (a;, b;)'s as above
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Improving efficiency
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Hardness of Ring-LWE

LPR10 : For all f, there is a reduction from ApproxSVP for Ok-ideals to
search Ring-LWE'.
For f cyclotomic, there is a reduction from search to decision
Ring-LWE’.
PRS17 : For all f, there is a reduction from ApproxSVP for Ok-ideals to
decision Ring-LWE'.
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Improving efficiency
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The landscape is complex

Selected open problems

@ What are the precise relationships between P-LWE, Ring-LWE and
Module-LWE? [AD17,RSW18]

What do the attacks on Ideal-SVP mean? [cbwi7,PHS19]

Is the relevant worst-case problem SVP for Ox-modules? [Ls15]
Can we go from a K to a K'? [GHPs13]

Are some K than others? See Wouter's talk!

What to think about MP-LWE? [Lyubashevsky16,RSSS17]
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The landscape is complex

Selected open problems

@ What are the precise relationships between P-LWE, Ring-LWE and
Module-LWE? [AD17,RSW18]

What do the attacks on Ideal-SVP mean? [cbwi7,PHS19]

Is the relevant worst-case problem SVP for Ox-modules? [Ls15]
Can we go from a K to a K'? [GHPs13]

Are some K than others? See Wouter's talk!

What to think about MP-LWE? [Lyubashevsky16,RSSS17]

It matters! All these Round 2 NIST candidates rely on algebraic lattices:

Dilithium, Falcon, Tesla,

Kyber, LAC, NewHope, NTRU, NTRUPrime, Round5, SABER, ThreeBears
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Plan for this lecture

@ Signing from SIS
@ Improving efficiency
@ NTRU
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NTRU — a personal variant of [HPS98]

Notations: R =Z[x]/(x"+1) Ry =Z4[x]/(x" +1)

Keygen: Sample f, g in R with coeffs in {—1,0,1}.
sk=1f, pk=h:=g/f mod q.
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NTRU — a personal variant of [HPS98]

Notations: R =Z[x]/(x"+1) Ry =Z4[x]/(x" +1)

Keygen: Sample f, g in R with coeffs in {—1,0,1}.
sk=1f, pk=h:=g/f mod q.

Encrypt: M € R with coeffs in {0,1}. Sample s and e small.
C=2(h-s+e)+ Mmodq.
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NTRU — a personal variant of [HPS98]

Notations: R =Z[x]/(x"+1) Ry =Z4[x]/(x" +1)

Keygen: Sample f, g in R with coeffs in {—1,0,1}.
sk=1f, pk=h:=g/f mod q.

Encrypt: M € R with coeffs in {0,1}. Sample s and e small.
C=2(h-s+e)+ Mmodq.

Decrypt: (C-f mod g) mod2 is M- f mod 2
Divide by f mod 2.

(This requires f invertible mod g and mod 2)
Correct as long as |2(g - s + e - f)| < q/2 with probability ~ 1
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The design is versatile

o f=x"4+1, gand “2" may be changed
@ Use diverse types of rounding or noises

@ Use small or big coefficients for f, g,s, e
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The design is versatile

o f=x"4+1, gand “2" may be changed
@ Use diverse types of rounding or noises

@ Use small or big coefficients for f, g,s, e

Security boils down to two intractability assumptions:

e Indistinguishability of h = g/f mod g from uniform in R,.
May be waived, but at a significant cost [SS11]
Can be done efficiently for large ¢ [ABD16,CJL16,KF17]

@ Indistinguishability of ciphertext from uniform, i.e., Ring-LWE-like.

Introduction to lattice-based cryptography
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My favorite NTRU open problem

Breaking the key is solving unique-SVP for a rank-2 module lattice.

MZ:{Xl,X2€R2ZX1~h:X2 mod q}

e For a uniform h, we would expect \(M) ~ \/n-q
e But (f,g) € M is shorter than that
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My favorite NTRU open problem

Breaking the key is solving unique-SVP for a rank-2 module lattice.

MZ:{Xl,X2€R2ZX1~h:X2 mod q}

e For a uniform h, we would expect \(M) ~ \/n-q
e But (f,g) € M is shorter than that

For arbitrary lattices, BDD reduces to unique-SVP in 1 more dimension,
and unique-SVP reduces to BDD in same dimension.

Is unique-SVP for rank-2 modules computationally closer to:

@ BDD in rank-1 modules, i.e., ideal lattices?

(some weaknesses are known)

@ or BDD in rank-2 modules?
(some equivalence with Ring-LWE known [LS15,AD17])
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Plan for this lecture

@ Signing from SIS
@ Improving efficiency
@ NTRU
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Wrapping up

Lattices are conjectured to provide hard worst-case problems.
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Wrapping up

Lattices are conjectured to provide hard worst-case problems.

SIS/LWE are a-c variants no easier than some hard w-c lattice problems.
@ There is no fundamental weakness in SIS/LWE.

@ The reductions are not meant for setting parameters,
but for ensuring that there is no fundamental weakness.

Damien Stehlé Introduction to lattice-based cryptography



Conclusion
(o] J

Wrapping up

Lattices are conjectured to provide hard worst-case problems.

SIS/LWE are a-c variants no easier than some hard w-c lattice problems.
@ There is no fundamental weakness in SIS/LWE.

@ The reductions are not meant for setting parameters,
but for ensuring that there is no fundamental weakness.

SIS and LWE can be viewed linear algebra problems.
@ Leads to simple cryptographic design.
@ Allows advanced cryptographic constructions.
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Wrapping up

Lattices are conjectured to provide hard worst-case problems.

SIS/LWE are a-c variants no easier than some hard w-c lattice problems.
@ There is no fundamental weakness in SIS/LWE.

@ The reductions are not meant for setting parameters,
but for ensuring that there is no fundamental weakness.

SIS and LWE can be viewed linear algebra problems.
@ Leads to simple cryptographic design.
@ Allows advanced cryptographic constructions.

To get faster schemes, use algebraic lattices.
@ Does it impact computational intractability?

@ Plenty of problems involving algebraic number theory.
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