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Introduction
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Lattice-based cryptography

Maybe the most mature approach for post-quantum crypto.
Allows advanced cryptographic constructions

(homomorphic enc., some functional enc., some program obfuscation, etc)

Topics covered in this mini-course:
© Hardness foundations: what are the assumptions?
@ Basic schemes: encrypting and signing

@ Fast(er) schemes using algebraic lattices
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Lattice-based cryptography

Maybe the most mature approach for post-quantum crypto.
Allows advanced cryptographic constructions

(homomorphic enc., some functional enc., some program obfuscation, etc)

Topics covered in this mini-course:
© Hardness foundations: what are the assumptions?
@ Basic schemes: encrypting and signing

@ Fast(er) schemes using algebraic lattices

References:
@ C. Peikert: a decade of lattice-based cryptography
eprint 2015/939
@ NewHope, Frodo, Kyber and Dilithium
eprint 2015/1092, 2016/659, 2017/633 and 2017/634
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Plan for this lecture

@ Background on Euclidean lattices.
@ The SIS and LWE problems.
© Encrypting from LWE.
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Lattices
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Euclidean lattices

Lattice = discrete subgroup of R”
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Lattices
®0000000

Euclidean lattices

Lattice = discrete subgroup of R”

= {Z’-SnX;b,' ZX,'EZ}

If the b;'s are linearly independent,

they are called a basis. '
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Lattices
®0000000

Euclidean lattices

Lattice = discrete subgroup of R”

= {Z’-SnX;b,' ZX,'EZ}
If the b;'s are linearly independent, ’
they are called a basis.
Bases are not unique, but they can be
obtained from each other by integer trans-
forms of determinant +1:

2 1] _[4 -3] [1 1 ’
10 6| |2 4 2 1|
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Lattices
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Lattice invariants

Dimension: n.

First minimum:
A1 =min(||b|| : b€ L\ 0).
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Lattices
0O®@000000

Lattice invariants

Dimension: n.

First minimum:
A1 =min(||b|| : b€ L\ 0).

Successive minima: (k < n)
Ak = min(r : dimspan(LNB(r)) > k).
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Lattices

0O®@000000

Lattice invariants

Dimension: n.

First minimum:
A1 =min(||b|| : b€ L\ 0).

Successive minima: (k < n)
Ak = min(r : dimspan(LNB(r)) > k).

Lattice determinant:
det L = |det(b;);|, for any basis.
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Lattices

0O®@000000

Lattice invariants

Dimension: n.

First minimum:
A1 =min(||b|| : b€ L\ 0).

Successive minima: (k < n)
Ak = min(r : dimspan(LNB(r)) > k).

Lattice determinant:
det L = |det(b;);|, for any basis.

Minkowski theorem:
A (L) < v/n- (det L)Y/,

Damien Stehlé Introduction to lattice-based cryptography 19/03/2019



Lattices
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An example: construction A lattices

Construction A. Let m>n>1and g > 2 prime (for tranquility)
Let A€ Zg*". Then L(A):=A-Zgj+q-Z™ is a lattice.

@ Dimension: m
o Determinant, for full-rank A: g

m—n
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An example: construction A lattices

Construction A. Let m>n>1and g > 2 prime (for tranquility)
Let A€ Zg*". Then L(A):=A-Zj+q-Z™ is a lattice.
Minkowski

(For full-rank A) Dim: m, det: g™ " = A\ (L(A)) < /m - gt="/m.
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An example: construction A lattices

Construction A. Let m>n>1and g > 2 prime (for tranquility)
Let A€ Zg*". Then L(A):=A-Zj+q-Z™ is a lattice.

Minkowski

(For full-rank A) Dim: m, det: g™ " = A\ (L(A)) < /m - gt="/m.

Pral\t <B] = Pra[3se€Z},beZ™:0<|b]|<B A b=A-s[q]
< Zs:zb: max Pra[A-s=Db [q]]
< q”~(B/\/E)’"-mel]]x Pral[A-s=b [q]]

S 9" (B/Vm)T-q"

(Third step requires B > /m, last step requires B < q)
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An example: construction A lattices

Construction A. Let m>n>1and g > 2 prime (for tranquility)
Let A€ Zg*". Then L(A):=A-Zj+q-Z™ is a lattice.

Minkowski

(For full-rank A) Dim: m, det: g™ " = A\ (L(A)) < /m - gt="/m.

Pral\t <B] = Pra[3se€Z},beZ™:0<|b]|<B A b=A-s[q]
< Zs:zb: max Pra[A-s=Db [q]]
< q”~(B/\/E)’"-mel]]x Pral[A-s=b [q]]

< 9" (B/Vm)"-q "
(Third step requires B > /m, last step requires B < q)
Overall, if g = Q(y/m), with probability ~ 1 over a uniform A:

M(L(A)) = @ (min(g, v/m - ¢~"/™))
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Another example

Let m>n>1and g > 2 prime.

Construction A for the orthogonal code

Let A€ ZT*". Then A- ={x € Z™:x" - A=0[q]} is a lattice.
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Lattices
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Another example

Let m>n>1and g > 2 prime.

Construction A for the orthogonal code

Let A€ ZT*". Then A- ={x € Z™:x" - A=0[q]} is a lattice.

@ Dimension: m

o Determinant: ¢4,

e \; ~ min(y/nlog q,+/mq"/™), with probability ~ 1 for a uniform A.
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SVP and SIVP

The Shortest Vector Problem: SVP,
Given a basis of L, find b € L\ 0 such that: ||b|| <~ - A(L).
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Lattices
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SVP and SIVP

The Shortest Vector Problem: SVP,
Given a basis of L, find b € L\ 0 such that: ||b|| <~ - A(L).

The Shortest Independent Vectors Problem: SIVP,

Given a basis of L, find by,...,b, € L lin. indep. such that:
max [|bj]| < - An(L).
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Lattices
0O0000e00

SVP and SIVP

The Shortest Vector Problem: SVP,
Given a basis of L, find b € L\ 0 such that: ||b|| <~ - A(L).

The Shortest Independent Vectors Problem: SIVP,

Given a basis of L, find by,...,b, € L lin. indep. such that:
max [|bj]| < - An(L).

@ NP-hard when Y= O(].) (under randomized reductions for SVP).
o In lattice-based crypto: v = Poly(n) (most often).

@ Solvable in polynomial time when v = 20(n)
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Lattices
00000000

CVP and BDD

The Closest Vector Problem: CVP,

Given a basis of L and a target t € Q", find b € L such that:
Ib—t|| <~-min(llc—t]|:ceLl).

BDD, (Bounded Distance Decoding)
Find the closest b € L to t, under the promise that ||b — t|| < A;(L)/7.
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Hardness

@ All known algorithms for SVP, SIVP, CVP, BDD
with v = Poly(n) cost 2"

@ Same landscape if we allow quantum algorithms.
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Hardness

@ All known algorithms for SVP, SIVP, CVP, BDD
with v = Poly(n) cost 2"

@ Same landscape if we allow quantum algorithms.

Open problems

@ How equivalent are these problems? See survey by Noah Stephens-Davidowitz

@ Can we beat the 24" cost barrier?

But these are worst-case problems, and worst-case hardness is not
convenient for cryptographic purposes.

Damien Stehlé Introduction to lattice-based cryptography 19/03/2019



SIS and LWE
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Plan for this lecture

@ Background on Euclidean lattices.
@ The SIS and LWE problems.
© Encrypting from LWE.
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SIS and LWE
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SISs.q.m [Ajtai’96]

The Short Integer Solution Problem
Given a uniform A € Z7", find x € Z™ \ 0 such that:

x| < B and x" -A=0mod gq.

o< m o

b~
"
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SIS and LWE
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SIS as a lattice problem

Remember our lattice example:
At ={xez™:xT-A=0]q]}.

SIS consists in finding a short non-zero vector in AL, for a random A.
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SIS and LWE
0O0e00000000

SIS as a lattice problem

Remember our lattice example:
At ={xez™:xT-A=0]q]}.
SIS consists in finding a short non-zero vector in AL, for a random A.

o If 3 < \i =~ min(y/nlog q,/mq™™): trivially hard.
e If B > q: trivially easy.

@ In between: interesting.

SIS is an average-case SVP/SIVP.
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SIS and LWE
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Hardness of SIS? [Ajtai96,...,GPV08]

Worst-case to average-case reduction (v = nf, g > +/nf3)

Any efficient SISg 4.m algorithm succeeding with non-negligible
probability leads to an efficient SIVP., algorithm.
(See [MP13] for smaller q)
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SIS and LWE
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Hardness of SIS? [Ajtai96,...,GPV08]

Worst-case to average-case reduction (v = nf, g > +/nf3)

Any efficient SISg 4.m algorithm succeeding with non-negligible
probability leads to an efficient SIVP., algorithm.
(See [MP13] for smaller q)

Sketch:
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Hardness of SIS? [Ajtai96,...,GPV08]

Worst-case to average-case reduction (v = nf, g > +/nf3)

Any efficient SISg 4.m algorithm succeeding with non-negligible
probability leads to an efficient SIVP., algorithm.
(See [MP13] for smaller q)

Sketch:
@ Start with a short basis B of the lattice L C Z".
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SIS and LWE
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Hardness of SIS? [Ajtai96,...,GPV08]

Worst-case to average-case reduction (v = nf, g > +/nf3)

Any efficient SISg 4.m algorithm succeeding with non-negligible
probability leads to an efficient SIVP., algorithm.
(See [MP13] for smaller q)

Sketch:
@ Start with a short basis B of the lattice L C Z".

@ Sample m short random lattice points (y;)i<m-
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SIS and LWE
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Hardness of SIS? [Ajtai96,...,GPV08]

Worst-case to average-case reduction (v = nf, g > +/nf3)

Any efficient SISg 4 m algorithm succeeding with non-negligible
probability leads to an efficient SIVP,, algorithm.
(See [MP13] for smaller q)

Sketch:
@ Start with a short basis B of the lattice L C Z".
@ Sample m short random lattice points (y;)i<m-

@ Look at their coordinates with respect to B, reduced modulo gq.
These form a SIS instance A.
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Hardness of SIS? [Ajtai96,...,GPV08]

Worst-case to average-case reduction (v = nf, g > +/nf3)

Any efficient SISg 4 m algorithm succeeding with non-negligible
probability leads to an efficient SIVP,, algorithm.
(See [MP13] for smaller q)

Sketch:
@ Start with a short basis B of the lattice L C Z".
@ Sample m short random lattice points (y;)i<m-

@ Look at their coordinates with respect to B, reduced modulo gq.
These form a SIS instance A.

@ The SIS oracle gives x € Z™ short s.t. x™ - A= 0 [q].
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SIS and LWE
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Hardness of SIS? [Ajtai96,...,GPV08]

Worst-case to average-case reduction (v = nf, g > +/nf3)

Any efficient SISg 4 m algorithm succeeding with non-negligible
probability leads to an efficient SIVP,, algorithm.
(See [MP13] for smaller q)

Sketch:
@ Start with a short basis B of the lattice L C Z".
@ Sample m short random lattice points (y;)i<m-

@ Look at their coordinates with respect to B, reduced modulo gq.
These form a SIS instance A.

@ The SIS oracle gives x € Z™ short s.t. x™ - A= 0 [q].

° %Zx,-y,- is a shorter vector in L.
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SIS and LWE
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Hardness of SIS? [Ajtai96,...,GPV08]

Worst-case to average-case reduction (v = nf, g > +/nf3)

Any efficient SISg 4 m algorithm succeeding with non-negligible
probability leads to an efficient SIVP,, algorithm.
(See [MP13] for smaller q)

Sketch:
@ Start with a short basis B of the lattice L C Z".
@ Sample m short random lattice points (y;)i<m-

@ Look at their coordinates with respect to B, reduced modulo gq.
These form a SIS instance A.

@ The SIS oracle gives x € Z™ short s.t. x™ - A= 0 [q].

° %Zx,-y,- is a shorter vector in L.

@ Repeat to get a basis shorter than the initial one.
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SIS and LWE
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Hardness of SIS? [Ajtai96,...,GPV08]

Worst-case to average-case reduction (v = nf, g > +/nf3)

Any efficient SISg 4 m algorithm succeeding with non-negligible
probability leads to an efficient SIVP,, algorithm.
(See [MP13] for smaller q)

Sketch:
@ Start with a short basis B of the lattice L C Z".
@ Sample m short random lattice points (y;)i<m-

@ Look at their coordinates with respect to B, reduced modulo gq.
These form a SIS instance A.

@ The SIS oracle gives x € Z™ short s.t. x™ - A= 0 [q].

° %Zx,-y,- is a shorter vector in L.

@ Repeat to get a basis shorter than the initial one.

@ Repeat to get shorter and shorter bases of L.
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SIS and LWE
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LWE, ; [Regev'05]
Let s € Zg. Let Ds o be the distribution corresponding to:
(a;(a,s) +e[q]) with a<«> U(Z), e < |Vaql,

where 1,4 denotes the continuous Gaussian of st. dev. aq.

The Learning With Errors Problem — Search-LWE,,

Let s € Zg. Given arbitrarily many samples from D; ,, find s.
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SIS and LWE
00000800000

LWE as a lattice problem

Let s € Zg. Given (A As + e [q]) with A <> U(Z7*") and e <> |1, |
for and arbitrary m, find s.

Remember our lattice example La=A-Zg+q-Z™.
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SIS and LWE
00000800000

LWE as a lattice problem

Let s € Zg. Given (A As + e [q]) with A <> U(Z7*") and e <> |1, |
for and arbitrary m, find s.

Remember our lattice example La=A-Zg+q-Z™.

o If & = 0, then LWE is easy to solve.
o If a > 1, then LWE is trivially hard.

@ In between: interesting.

LWE is an average-case BDD.
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SIS and LWE
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How hard is LWE? [Regev05]

Quantum worst-case to average-case reduction (v~ n/a, aq > +/n)

Assume that g is prime and Poly(n).
Any efficient LWE, , 4 algorithm succeeding with non-negligible
probability leads to an efficient quantum SIVP, algorithm.
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How hard is LWE? [Regev05]

Quantum worst-case to average-case reduction (v~ n/a, aq > +/n)

Assume that g is prime and Poly(n).
Any efficient LWE, , 4 algorithm succeeding with non-negligible
probability leads to an efficient quantum SIVP, algorithm.
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SIS and LWE
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How hard is LWE? [Regev05]

Quantum worst-case to average-case reduction (v~ n/a, aq > +/n)

Assume that g is prime and Poly(n).
Any efficient LWE, , 4 algorithm succeeding with non-negligible
probability leads to an efficient quantum SIVP, algorithm.

o [Peikert09]: classical reduction, for g ~ 2", from BDD.
@ [SSTXO09]: simpler (but weaker) quantum reduction, from SIS.

o [BLPRS13]: de-quantized reduction, for any g that is at least some
Poly(n), from a weaker worst-case lattice problem.

o [BKSW18]: yet another quantum reduction, from BDD.
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SIS and LWE
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Decision LWE

Ds.o: (a;(a,s) +e[q]) with a<«> U(Z]), e+ |vaqgl-

Let s € Zg. Given arbitrarily many samples from D; ., find s.
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SIS and LWE

00000008000

Decision LWE

Ds.o: (a;(a,s) +e[q]) with a<«> U(Z]), e+ |vaqgl-

Let s € Zg. Given arbitrarily many samples from D; ., find s.

Let s <= U(Zj). With non-negligible probability over s, distinguish
between an oracle access to Ds o or an oracle access to U(Z]t1).
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SIS and LWE
00000008000

Decision LWE

)

Let s € Zg. Given arbitrarily many samples from D; ., find s.

Ds.o: (a;(a,s) +e[q]) with a<«> U(Z]), e+ |vaqgl-

Let s <> U(Zg). With non-negligible probability over s, distinguish
between an oracle access to D5, or an oracle access to U(Zg“).

Dec-LWE and Search-LWE efficiently reduce to one another. J
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Decision LWE and SIS

> =0 o (eI F
M _ L] g =
O 4 -> SMALL

.Snme-//
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Nice properties of LWE

@ Arbitrary number of samples
= can amplify success probability and distinguishing advantage.
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Nice properties of LWE

@ Arbitrary number of samples
= can amplify success probability and distinguishing advantage.

@ Random self-reducibility
= solving for a non-negligible fraction of s's suffices.

(AJA-s+e)+(0,A-t)=(A,A-(s+t)+e)
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Nice properties of LWE

@ Arbitrary number of samples
= can amplify success probability and distinguishing advantage.

@ Random self-reducibility
= solving for a non-negligible fraction of s's suffices.

(AJA-s+e)+(0,A-t)=(A,A-(s+t)+e)

@ A distinguishing oracle allows to check a guess for a coordinate of s.
= These lead to a search-to-decision reduction.
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Nice properties of LWE

@ Arbitrary number of samples
= can amplify success probability and distinguishing advantage.

@ Random self-reducibility
= solving for a non-negligible fraction of s's suffices.

(AJA-s+e)+(0,A-t)=(A,A-(s+t)+e)

@ A distinguishing oracle allows to check a guess for a coordinate of s.

= These lead to a search-to-decision reduction.

@ Can take different types of noises:
o Discrete Gaussian
e Uniform integer in an interval
o Deterministic, using rounding
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Open problems

Selected problems on SIS/LWE

o Can we get hardness of SIS/LWE based on SIVP with approximation
factor less than n?
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SIS and LWE
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Open problems

Selected problems on SIS/LWE

o Can we get hardness of SIS/LWE based on SIVP with approximation
factor less than n?

e Can we reduce SVP,, to SIS/LWE?
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Open problems

Selected problems on SIS/LWE

o Can we get hardness of SIS/LWE based on SIVP with approximation
factor less than n?

e Can we reduce SVP,, to SIS/LWE?

@ Can we get a classical reduction from SIVP to LWE with parameters
equivalent to those of Regev's quantum reduction?

@ Or is this discrepancy intrinsic and there is a quantum acceleration
for solving LWE and SIVP?

Damien Stehlé Introduction to lattice-based cryptography 19/03/2019



LWE-based encryption
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Plan for this lecture

@ Background on Euclidean lattices.
@ The SIS and LWE problems.
@ Encrypting from LWE.

SVP/SIVP/CVP/BDD are here only implicitly:
(almost) no need to know lattices for designing lattice-based schemes!
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LWE-based encryption
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LWE with small secret

Small-secret-LWE,,

Let s <= [vaq|". With non-negligible probability over s, distinguish
between (arbitrarily many) samples from D; ,, or from U(ZJ').

Y - +
2 /.L =
b bk
Al A, |-
AL.H =, AL./ 8

ALt ALY - <rp-<lt
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LWE-based encryption

Eme(®

D(d.(c)c— = - -+ _,""[:a.]'M

Damien Stehlé Introduction to lattice-based cryptography 19/03/2019



LWE-based encryption
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Decryption correctness

To ensure correctness, it suffices that
tTe +7(~s1)| < q/4,

with probability very close to 1.
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LWE-based encryption
[e]e]e] lelele]e]e]

Decryption correctness

To ensure correctness, it suffices that
‘tTe+fT(—s|1)‘ < q/4,
with probability very close to 1.

Up to the roundings of Gaussians:
o Gaussian tail bound = ||t||, €], lIfl, lIsl| S vnag
with probability 1 — 27",
o It suffices that (v/naq)® < q/4, ie., a < 1/(n/q).
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LWE-based encryption
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Decryption correctness

To ensure correctness, it suffices that
‘tTe+fT(—s|1)‘ < q/4,
with probability very close to 1.

Up to the roundings of Gaussians:

o Gaussian tail bound = ||t||,|le]l, If]], |Is|| < v/nag
with probability 1 — 27",

o It suffices that (v/naq)® < q/4, ie., a < 1/(n/q).

Better:

o t’eis a 1-dim Gaussian of parameter aq|le||.
o Gaussian tail bound = |tTe| < \/nlogn- (aq)? with
probability > 1 — 1/Poly(n).

o It suffices that a < 1/v/qnlogn.
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LWE-based encryption
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Do decryption errors matter?

@ We can cut Gaussian tails and use the first error bound to guarantee
perfect correctness.

@ The probability is quite close to 1, so it does not matter much.

@ We can use an error correcting code to boost the correct decryption
probability.
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LWE-based encryption
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Do decryption errors matter?

@ We can cut Gaussian tails and use the first error bound to guarantee
perfect correctness.

@ The probability is quite close to 1, so it does not matter much.

@ We can use an error correcting code to boost the correct decryption
probability.

For security against chosen ciphertext attacks, it does matter

([HHK17,AGJNVV19], 2017/604, 2018/1089, 2019/043). = tune parameters to make
it very small.
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LWE-based encryption
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Passive security (IND-CPA)

L LMNIFORM
e AN

[

= ,4%+J; PR
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LWE-based encryption
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Passive security (IND-CPA)

_L; ONVIFaRM

N7
rk

Bl 27 oty 5y
e - &

5"«.’6*@0%

UNIFORM ‘\-J.J.Q_M
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LWE-based encryption
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Setting parameters (asymptotically)

How do we choose n, o and g?
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LWE-based encryption
0O00000e00

Setting parameters (asymptotically)

How do we choose n, o and g?

Minimize bandwidth/key-size/run-times under the conditions that:
o Correctness holds

@ Some security is guaranteed
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LWE-based encryption
0O00000e00

Setting parameters (asymptotically)

How do we choose n, o and g?

Minimize bandwidth/key-size/run-times under the conditions that:

o Correctness holds a <S1/y/qnlogn
@ Some security is guaranteed aq >+/n

Take \/n/q ~ 1/\/qnlogn, i.e., g =~ n*log n.
Take a =~ /n/q ~ 1/(n*/?log n).
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LWE-based encryption
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Setting parameters (asymptotically)

How do we choose n, o and g?

Minimize bandwidth/key-size/run-times under the conditions that:

o Correctness holds a <S1/y/qnlogn
@ Some security is guaranteed aq >+/n

Take \/n/q ~ 1/\/qnlogn, i.e., g =~ n*log n.
Take a =~ /n/q ~ 1/(n*/?log n).

SIVP,, in dimension n quantumly reduces to LWE,, , 4 for v = n/a.
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LWE-based encryption
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From passive to active security

IND-CCA security

The encryptions of two plaintexts chosen by the adversary A should
remain indistinguishable in A’s view, even if A can request decryptions
of ciphertexts of its choice (except the challenge ciphertexts).

How do we upgrade IND-CPA security to IND-CCA security?
@ OAEP: requires decryption to recover the encryption randomness
This is not our case: we recover t"e + f7(—s|1).
o Fujisaki-Okamoto: upgraded decryption uses initial encryption and
decryption algorithms.

@ FO is secure in the random oracle model, if decryption errors occur
with exponentially small probability.

@ FO is also secure in the quantum random oracle model, but with
a big advantage loss.

D. Hofheinz, K. Hévelmanns, E. Kiltz. A modular analysis of the Fujisaki-Okamoto transformation. Eprint 2017/604.
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Open problems

Selected problems on LWE encryption

@ Do the diverse noise distributions have an impact?
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Open problems

Selected problems on LWE encryption

@ Do the diverse noise distributions have an impact?

@ What is the exact impact of decryption failures to CCA security of
the FO upgrade?
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LWE-based encryption
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Open problems

Selected problems on LWE encryption

@ Do the diverse noise distributions have an impact?

@ What is the exact impact of decryption failures to CCA security of
the FO upgrade?

o Can we get efficient CCA security without the random oracle
heuristic?
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Plan for this lecture

@ Background on Euclidean lattices.
@ The SIS and LWE problems.
© Encrypting from LWE.
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Wrapping up

Lattices ae conjectured to provide exponentially hard worst-case
problems, even for quantum algorithms.

SIS and LWE are average-case variants that are proved to be no easier
than some such hard lattice problems.

@ There is no fundamental weakness in SIS/LWE,
compared to worst-case lattices.

@ The reductions are not meant for setting parameters,
but for ensuring that there is no fundamental weakness.

@ Average-case problems are better suited for cryptographic design.

SIS and LWE are linear algebra problems.
@ Leads to simple cryptographic design.
@ Allows advanced cryptographic constructions.
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Next time

@ Signing from SIS
e Efficient variants of SIS/LWE
e NTRU
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