Introduction	Lattices	SIS and LWE	LWE-based encryption	Conclusion
00	0000000	0000000000	00000000	000

Introduction to lattice-based cryptography

Damien Stehlé

ENS de Lyon

Aussois, March 2019

Damien Stehlé

Introduction	Lattices	SIS and LWE	LWE-based encryption	Conclusion
•0				
1		1		

Lattice-based cryptography

Maybe the most mature approach for post-quantum crypto. Allows advanced cryptographic constructions (homomorphic enc., some functional enc., some program obfuscation, etc)

Topics covered in this mini-course:

- I Hardness foundations: what are the assumptions?
- Basic schemes: encrypting and signing
- Seast(er) schemes using algebraic lattices

References:

• C. Peikert: a decade of lattice-based cryptography

eprint 2015/939

• NewHope, Frodo, Kyber and Dilithium

eprint 2015/1092, 2016/659, 2017/633 and 2017/634

The second second second		and the		
••				
Introduction	Lattices	SIS and LWE	LWE-based encryption	Conclusion

Lattice-based cryptography

Maybe the most mature approach for post-quantum crypto. Allows advanced cryptographic constructions (homomorphic enc., some functional enc., some program obfuscation, etc)

Topics covered in this mini-course:

- I Hardness foundations: what are the assumptions?
- Basic schemes: encrypting and signing
- Seast(er) schemes using algebraic lattices

References:

• C. Peikert: a decade of lattice-based cryptography

eprint 2015/939

• NewHope, Frodo, Kyber and Dilithium

eprint 2015/1092, 2016/659, 2017/633 and 2017/634

Introduction	Lattices	SIS and LWE	LWE-based encryption	Conclusion
00	0000000	0000000000	00000000	000
Dlan for	this locture			

Plan for this lecture

- Background on Euclidean lattices.
- The SIS and LWE problems.
- Incrypting from LWE.

	Lattices	SIS and LWE	LWE-based encryption	Conclusion
00	•000000	0000000000	00000000	000

Euclidean lattices

$\begin{array}{ll} \text{Lattice} \equiv \text{discrete subgroup of } \mathbb{R}^n \\ \equiv & \{\sum_{i < n} \times_i \mathbf{b}_i : x_i \in \mathbb{Z}\} \end{array}$

If the **b**_i's are linearly independent, they are called a **basis**.

Bases are not unique, but they can be obtained from each other by integer transforms of determinant ± 1 :

$$\begin{bmatrix} -2 & 1 \\ 10 & 6 \end{bmatrix} = \begin{bmatrix} 4 & -3 \\ 2 & 4 \end{bmatrix} \cdot \begin{bmatrix} 1 & 1 \\ 2 & 1 \end{bmatrix}.$$

Lattices	SIS and LWE	LWE-based encryption	Conclusion
•0000000			

Euclidean lattices

 $\begin{array}{ll} \mathsf{Lattice} \ \equiv \ \mathsf{discrete} \ \mathsf{subgroup} \ \mathsf{of} \ \mathbb{R}^n \\ \ \equiv \ \ \{\sum_{i \le n} x_i \mathbf{b}_i : x_i \in \mathbb{Z}\} \end{array}$

If the \mathbf{b}_i 's are linearly independent, they are called a **basis**.

Bases are not unique, but they can be obtained from each other by integer transforms of determinant ± 1 :

$$\begin{bmatrix} -2 & 1 \\ 10 & 6 \end{bmatrix} = \begin{bmatrix} 4 & -3 \\ 2 & 4 \end{bmatrix} \cdot \begin{bmatrix} 1 & 1 \\ 2 & 1 \end{bmatrix}.$$

Lattices	SIS and LWE	LWE-based encryption	Conclusion
•0000000			

Euclidean lattices

 $\begin{array}{ll} \mathsf{Lattice} \ \equiv \ \mathsf{discrete} \ \mathsf{subgroup} \ \mathsf{of} \ \mathbb{R}^n \\ \ \equiv \ \ \{\sum_{i \leq n} x_i \mathbf{b}_i : x_i \in \mathbb{Z}\} \end{array}$

If the \mathbf{b}_i 's are linearly independent, they are called a **basis**.

Bases are not unique, but they can be obtained from each other by integer transforms of determinant ± 1 :

$$\begin{bmatrix} -2 & 1 \\ 10 & 6 \end{bmatrix} = \begin{bmatrix} 4 & -3 \\ 2 & 4 \end{bmatrix} \cdot \begin{bmatrix} 1 & 1 \\ 2 & 1 \end{bmatrix}.$$

Lattices	SIS and LWE	LWE-based encryption	Conclusion
0000000			

Dimension: n.

First minimum: $\lambda_1 = \min(\|\mathbf{b}\| : \mathbf{b} \in L \setminus \mathbf{0}).$

Successive minima: $(k \le n)$ $\lambda_k = \min(r : \dim \operatorname{span}(L \cap \mathcal{B}(r)) \ge k).$

Lattice determinant: det $L = |\det(\mathbf{b}_i)_i|$, for any basis.

	Lattices	SIS and LWE	LWE-based encryption	Conclusion
00	0000000	0000000000	00000000	000

Dimension: n.

First minimum: $\lambda_1 = \min(\|\mathbf{b}\| : \mathbf{b} \in L \setminus \mathbf{0}).$

Successive minima: $(k \le n)$ $\lambda_k = \min(r : \dim \operatorname{span}(L \cap \mathcal{B}(r)) \ge k).$

Lattice determinant: det $L = |\det(\mathbf{b}_i)_i|$, for any basis.

	Lattices	SIS and LWE	LWE-based encryption	Conclusion
00	0000000	0000000000	00000000	000

Dimension: n.

First minimum: $\lambda_1 = \min(\|\mathbf{b}\| : \mathbf{b} \in L \setminus \mathbf{0}).$

Successive minima: $(k \le n)$ $\lambda_k = \min(r : \dim \operatorname{span}(L \cap \mathcal{B}(r)) \ge k).$

Lattice determinant:

det $L = |\det(\mathbf{b}_i)_i|$, for any basis.

	Lattices	SIS and LWE	LWE-based encryption	Conclusion
00	0000000	0000000000	00000000	000

Dimension: n.

First minimum: $\lambda_1 = \min(\|\mathbf{b}\| : \mathbf{b} \in L \setminus \mathbf{0}).$

Successive minima: $(k \le n)$ $\lambda_k = \min(r : \dim \operatorname{span}(L \cap \mathcal{B}(r)) \ge k).$

Lattice determinant:

det $L = |\det(\mathbf{b}_i)_i|$, for any basis.

	Lattices	SIS and LWE	LWE-based encryption	Conclusion
00	0000000	0000000000	00000000	000

An example: construction A lattices

Construction A.Let $m \ge n \ge 1$ and $q \ge 2$ prime (for tranquility)Let $A \in \mathbb{Z}_q^{m \times n}$. Then $L(A) := A \cdot \mathbb{Z}_q^n + q \cdot \mathbb{Z}^m$ is a lattice.

- Dimension: m
- Determinant, for full-rank A: q^{m-n}

	Lattices	SIS and LWE	LWE-based encryption	Conclusion
00	0000000	0000000000	00000000	000

An example: construction A lattices

Construction A. Let $m \ge n \ge 1$ and $q \ge 2$ prime (for tranquility) Let $A \in \mathbb{Z}_{q}^{m \times n}$. Then $L(A) := A \cdot \mathbb{Z}_{q}^{n} + q \cdot \mathbb{Z}^{m}$ is a lattice.

(For full-rank A.) Dim: *m*, det:
$$q^{m-n} \stackrel{_{ ext{Minkowski}}}{\Longrightarrow} \lambda_1(L(A)) \leq \sqrt{m} \cdot q^{1-n/m}.$$

$$\begin{aligned} \mathsf{Pr}_{\mathcal{A}}[\lambda_{1} \leq B] &= \mathsf{Pr}_{\mathcal{A}}\left[\exists \mathbf{s} \in \mathbb{Z}_{q}^{n}, \mathbf{b} \in \mathbb{Z}^{m} : 0 < \|\mathbf{b}\| < B \land \mathbf{b} = A \cdot \mathbf{s} \ [q]\right] \\ &\leq \sum_{\mathbf{s}} \sum_{\mathbf{b}} \max_{\mathbf{s}, \mathbf{b}} \mathsf{Pr}_{\mathcal{A}}[A \cdot \mathbf{s} = \mathbf{b} \ [q]] \\ &\lesssim q^{n} \cdot (B/\sqrt{m})^{m} \cdot \max_{\mathbf{s}, \mathbf{b}} \mathsf{Pr}_{\mathcal{A}}[A \cdot \mathbf{s} = \mathbf{b} \ [q]] \\ &\lesssim q^{n} \cdot (B/\sqrt{m})^{m} \cdot q^{-m} \end{aligned}$$

(Third step requires $B \ge \sqrt{m}$, last step requires B < q) Overall, if $q = \Omega(\sqrt{m})$, with probability ≈ 1 over a uniform A:

$$\lambda_1(L(A)) \ge \Omega\left(\min(q,\sqrt{m}\cdot q^{1-n/m})\right)$$

 Introduction
 Lattices
 SIS and LWE
 LWE-based encryption
 Conclusion

 00
 00000000
 000000000
 000000000
 000

An example: construction A lattices

Construction A. Let $m \ge n \ge 1$ and $q \ge 2$ prime (for tranquility) Let $A \in \mathbb{Z}_{q}^{m \times n}$. Then $L(A) := A \cdot \mathbb{Z}_{q}^{n} + q \cdot \mathbb{Z}^{m}$ is a lattice.

(For full-rank A.) Dim: *m*, det:
$$q^{m-n} \stackrel{\text{Minkowski}}{\Longrightarrow} \lambda_1(L(A)) \leq \sqrt{m} \cdot q^{1-n/m}$$
.

$$\begin{aligned} \mathsf{Pr}_{A}[\lambda_{1} \leq B] &= \mathsf{Pr}_{A}\left[\exists \mathbf{s} \in \mathbb{Z}_{q}^{n}, \mathbf{b} \in \mathbb{Z}^{m} : 0 < \|\mathbf{b}\| < B \land \mathbf{b} = A \cdot \mathbf{s} \ [q]\right] \\ &\leq \sum_{\mathbf{s}} \sum_{\mathbf{b}} \max_{\mathbf{s}, \mathbf{b}} \mathsf{Pr}_{A}[A \cdot \mathbf{s} = \mathbf{b} \ [q]] \\ &\lesssim q^{n} \cdot (B/\sqrt{m})^{m} \cdot \max_{\mathbf{s}, \mathbf{b}} \mathsf{Pr}_{A}[A \cdot \mathbf{s} = \mathbf{b} \ [q]] \\ &\lesssim q^{n} \cdot (B/\sqrt{m})^{m} \cdot q^{-m} \end{aligned}$$

(Third step requires $B \ge \sqrt{m}$, last step requires B < q)

Overall, if $q = \Omega(\sqrt{m})$, with probability ≈ 1 over a uniform A:

 $\Lambda_1(L(A)) \ge \Omega\left(\min(q,\sqrt{m}\cdot q^{1-n/m})
ight)$

 Introduction
 Lattices
 SIS and LWE
 LWE-based encryption
 Conclusion

 00
 00000000
 000000000
 000000000
 000

An example: construction A lattices

Construction A. Let $m \ge n \ge 1$ and $q \ge 2$ prime (for tranquility) Let $A \in \mathbb{Z}_{q}^{m \times n}$. Then $L(A) := A \cdot \mathbb{Z}_{q}^{n} + q \cdot \mathbb{Z}^{m}$ is a lattice.

(For full-rank A.) Dim: *m*, det:
$$q^{m-n} \stackrel{\text{Minkowski}}{\Longrightarrow} \lambda_1(L(A)) \leq \sqrt{m} \cdot q^{1-n/m}$$
.

$$\begin{aligned} \mathsf{Pr}_{A}[\lambda_{1} \leq B] &= \mathsf{Pr}_{A}\left[\exists \mathbf{s} \in \mathbb{Z}_{q}^{n}, \mathbf{b} \in \mathbb{Z}^{m} : 0 < \|\mathbf{b}\| < B \land \mathbf{b} = A \cdot \mathbf{s} \left[q\right]\right] \\ &\leq \sum_{\mathbf{s}} \sum_{\mathbf{b}} \max_{\mathbf{s}, \mathbf{b}} \mathsf{Pr}_{A}[A \cdot \mathbf{s} = \mathbf{b} \left[q\right]] \\ &\lesssim q^{n} \cdot (B/\sqrt{m})^{m} \cdot \max_{\mathbf{s}, \mathbf{b}} \mathsf{Pr}_{A}[A \cdot \mathbf{s} = \mathbf{b} \left[q\right]] \\ &\lesssim q^{n} \cdot (B/\sqrt{m})^{m} \cdot q^{-m} \end{aligned}$$

(Third step requires $B \ge \sqrt{m}$, last step requires B < q) Overall, if $q = \Omega(\sqrt{m})$, with probability ≈ 1 over a uniform A:

$$\lambda_1(L(A)) \geq \Omega\left(\min(q,\sqrt{m}\cdot q^{1-n/m})
ight).$$

Lattices	SIS and LWE	LWE-based encryption	Conclusion
00000000			

Another example

Let $m \ge n \ge 1$ and $q \ge 2$ prime.

Construction A for the orthogonal code

Let $A \in \mathbb{Z}_q^{m \times n}$. Then $A^{\perp} = \{ \mathbf{x} \in \mathbb{Z}^m : \mathbf{x}^T \cdot A = \mathbf{0} \ [q] \}$ is a lattice.

- Dimension: *m*
- Determinant: q^{rk(A)}
- $\lambda_1 pprox \min(\sqrt{n\log q}, \sqrt{m}q^{n/m})$, with probability pprox 1 for a uniform A.

Lattices	SIS and LWE	LWE-based encryption	Conclusion
00000000			

Another example

Let $m \ge n \ge 1$ and $q \ge 2$ prime.

Construction A for the orthogonal code

Let $A \in \mathbb{Z}_{q}^{m \times n}$. Then $A^{\perp} = \{ \mathbf{x} \in \mathbb{Z}^{m} : \mathbf{x}^{T} \cdot A = \mathbf{0} [q] \}$ is a lattice.

- Dimension: m
- Determinant: $q^{rk(A)}$.
- $\lambda_1 \approx \min(\sqrt{n \log q}, \sqrt{m}q^{n/m})$, with probability ≈ 1 for a uniform A.

	Lattices	SIS and LWE	LWE-based encryption	Conclusion
	00000000			
SV/D and				
JVI ANC				

The Shortest Vector Problem: SVP_{γ}

Given a basis of *L*, find $\mathbf{b} \in L \setminus \mathbf{0}$ such that: $\|\mathbf{b}\| \leq \gamma \cdot \lambda(L)$.

	Lattices	SIS and LWE	LWE-based encryption	Conclusion
	00000000			
SV/D and				
JVI and				

The Shortest Vector Problem: SVP $_{\gamma}$

Given a basis of *L*, find $\mathbf{b} \in L \setminus \mathbf{0}$ such that: $\|\mathbf{b}\| \leq \gamma \cdot \lambda(L)$.

The Shortest Independent Vectors Problem: SIVP $_\gamma$

Given a basis of *L*, find $\mathbf{b}_1, \dots, \mathbf{b}_n \in L$ lin. indep. such that: $\max \|\mathbf{b}_i\| \leq \gamma \cdot \lambda_n(L).$

Lattices	SIS and LWE	LWE-based encryption	Conclusion
00000000			

SVP and SIVP

The Shortest Vector Problem: SVP_{γ}

Given a basis of *L*, find $\mathbf{b} \in L \setminus \mathbf{0}$ such that: $\|\mathbf{b}\| \leq \gamma \cdot \lambda(L)$.

The Shortest Independent Vectors Problem: SIVP $_{\gamma}$

Given a basis of *L*, find $\mathbf{b}_1, \ldots, \mathbf{b}_n \in L$ lin. indep. such that: $\max \|\mathbf{b}_i\| \leq \gamma \cdot \lambda_n(L).$

- NP-hard when $\gamma = {\it O}(1)$ (under randomized reductions for SVP).
- In lattice-based crypto: $\gamma = \mathcal{P}oly(n)$ (most often).
- Solvable in polynomial time when $\gamma = 2^{\widetilde{O}(n)}$.

Lattices	SIS and LWE	LWE-based encryption	Conclusion
00000000			

CVP and BDD

The Closest Vector Problem: CVP_{γ}

Given a basis of L and a target $\mathbf{t} \in \mathbb{Q}^n$, find $\mathbf{b} \in L$ such that: $\|\mathbf{b} - \mathbf{t}\| \le \gamma \cdot \min(\|\mathbf{c} - \mathbf{t}\| : \mathbf{c} \in L).$

BDD_{γ} (Bounded Distance Decoding)

Find the closest $\mathbf{b} \in L$ to \mathbf{t} , under the promise that $\|\mathbf{b} - \mathbf{t}\| \leq \lambda_1(L)/\gamma$.

	Lattices	SIS and LWE	LWE-based encryption	Conclusion
	0000000			
Hardness				

- All known algorithms for SVP, SIVP, CVP, BDD with γ = Poly(n) cost 2^{Ω(n)}.
- Same landscape if we allow quantum algorithms.

Open problems

- How equivalent are these problems? See survey by Noah Stephens-Davidowitz
- Can we beat the $2^{\Omega(n)}$ cost barrier?

But these are worst-case problems, and worst-case hardness is not convenient for cryptographic purposes.

	Lattices	SIS and LWE	LWE-based encryption	Conclusion
00	0000000	0000000000	00000000	000
Hardness	-			

- All known algorithms for SVP, SIVP, CVP, BDD with γ = Poly(n) cost 2^{Ω(n)}.
- Same landscape if we allow quantum algorithms.

Open problems

- How equivalent are these problems? See survey by Noah Stephens-Davidowitz
- Can we beat the $2^{\Omega(n)}$ cost barrier?

But these are worst-case problems, and worst-case hardness is not convenient for cryptographic purposes.

	Lattices	SIS and LWE	LWE-based encryption	Conclusion
00	0000000	••••••	00000000	000
Plan for	this lecture			

- Background on Euclidean lattices.
- **②** The SIS and LWE problems.
- Incrypting from LWE.

SISgam	[Aitai'96]			
Introduction	Lattices	SIS and LWE	LWE-based encryption 00000000	Conclusion
00	00000000	○●○○○○○○○○		000

The Short Integer Solution Problem

Given a uniform $A \in \mathbb{Z}_q^{m \times n}$, find $\mathbf{x} \in \mathbb{Z}^m \setminus \mathbf{0}$ such that:

$$\|\mathbf{x}\| \leq \beta$$
 and $\mathbf{x}^T \cdot A = \mathbf{0} \mod q$.

	Lattices	SIS and LWE	LWE-based encryption	Conclusion
00	0000000	0000000000	00000000	000
SIS as a lat	ttice probler	n		

Remember our lattice example:

$$A^{\perp} = \{ \mathbf{x} \in \mathbb{Z}^m : \mathbf{x}^T \cdot A = \mathbf{0} \ [q] \}.$$

SIS consists in finding a short non-zero vector in A^{\perp} , for a random A.

- If $\beta < \lambda_1 \approx \min(\sqrt{n \log q}, \sqrt{m}q^{n/m})$: trivially hard.
- If $\beta \ge q$: trivially easy.
- In between: interesting.

SIS is an average-case SVP/SIVP.

Introduction	Lattices	SIS and LWE	LWE-based encryption	Conclusion
00	00000000		00000000	000
SIS as a la	attice probl	em		

Remember our lattice example:

$$A^{\perp} = \{ \mathbf{x} \in \mathbb{Z}^m : \mathbf{x}^T \cdot A = \mathbf{0} \ [q] \}.$$

SIS consists in finding a short non-zero vector in A^{\perp} , for a random A.

- If $\beta < \lambda_1 \approx \min(\sqrt{n \log q}, \sqrt{m}q^{n/m})$: trivially hard.
- If $\beta \geq q$: trivially easy.
- In between: interesting.

SIS is an average-case SVP/SIVP.

Introduction	Lattices	SIS and LWE	LWE-based encryption	Conclusion
00	0000000	000000000	00000000	000

Worst-case to average-case reduction $(\gamma \approx n\beta, q \geq \sqrt{n}\beta)$

Any efficient ${\rm SIS}_{\beta,q,m}$ algorithm succeeding with non-negligible probability leads to an efficient ${\rm SIVP}_\gamma$ algorithm.

(See [MP13] for smaller q)

Introduction	Lattices	SIS and LWE	LWE-based encryption	Conclusion
00	0000000	000000000	00000000	000

Worst-case to average-case reduction $(\gamma \approx n\beta, q \geq \sqrt{n}\beta)$

Any efficient ${\rm SIS}_{\beta,q,m}$ algorithm succeeding with non-negligible probability leads to an efficient ${\rm SIVP}_\gamma$ algorithm.

(See [MP13] for smaller q)

- Start with a short basis B of the lattice $L \subseteq \mathbb{Z}^n$.
- Sample *m* short random lattice points (y_i)_{i ≤ m}.
- Look at their coordinates with respect to *B*, reduced modulo *q*. These form a SIS instance *A*.
- The SIS oracle gives $\mathbf{x} \in \mathbb{Z}^m$ short s.t. $\mathbf{x}^T \cdot A = \mathbf{0} \ [q]$.
- $\frac{1}{a} \sum x_i \mathbf{y}_i$ is a shorter vector in *L*.

Introduction	Lattices	SIS and LWE	LWE-based encryption	Conclusion
00	0000000	000000000	00000000	000

Worst-case to average-case reduction $(\gamma \approx n\beta, q \geq \sqrt{n}\beta)$

Any efficient ${\rm SIS}_{\beta,q,m}$ algorithm succeeding with non-negligible probability leads to an efficient ${\rm SIVP}_\gamma$ algorithm.

(See [MP13] for smaller q)

- Start with a short basis *B* of the lattice $L \subseteq \mathbb{Z}^n$.
- Sample *m* short random lattice points (y_i)_{i≤m}.
- Look at their coordinates with respect to *B*, reduced modulo *q*. These form a SIS instance *A*.
- The SIS oracle gives $\mathbf{x} \in \mathbb{Z}^m$ short s.t. $\mathbf{x}^T \cdot A = \mathbf{0} \ [q]$.
- $\frac{1}{a} \sum x_i \mathbf{y}_i$ is a shorter vector in *L*.

Introduction	Lattices	SIS and LWE	LWE-based encryption	Conclusion
00	0000000	000000000	00000000	000

Worst-case to average-case reduction $(\gamma \approx n\beta, q \geq \sqrt{n}\beta)$

Any efficient $SIS_{\beta,q,m}$ algorithm succeeding with non-negligible probability leads to an efficient $SIVP_{\gamma}$ algorithm.

(See [MP13] for smaller q)

- Start with a short basis *B* of the lattice $L \subseteq \mathbb{Z}^n$.
- Sample *m* short random lattice points $(\mathbf{y}_i)_{i \leq m}$.
- Look at their coordinates with respect to *B*, reduced modulo *q*. These form a SIS instance *A*.
- The SIS oracle gives $\mathbf{x} \in \mathbb{Z}^m$ short s.t. $\mathbf{x}^T \cdot A = \mathbf{0}$ [q].
- $\frac{1}{q} \sum x_i \mathbf{y}_i$ is a shorter vector in *L*.

Introduction	Lattices	SIS and LWE	LWE-based encryption	Conclusion
00	0000000	000000000	00000000	000

Worst-case to average-case reduction $(\gamma \approx n\beta, q \geq \sqrt{n}\beta)$

Any efficient $SIS_{\beta,q,m}$ algorithm succeeding with non-negligible probability leads to an efficient $SIVP_{\gamma}$ algorithm.

(See [MP13] for smaller q)

- Start with a short basis *B* of the lattice $L \subseteq \mathbb{Z}^n$.
- Sample *m* short random lattice points $(\mathbf{y}_i)_{i \leq m}$.
- Look at their coordinates with respect to *B*, reduced modulo *q*. These form a SIS instance *A*.
- The SIS oracle gives $\mathbf{x} \in \mathbb{Z}^m$ short s.t. $\mathbf{x}^T \cdot A = \mathbf{0} [q]$.
- $\frac{1}{a} \sum x_i \mathbf{y}_i$ is a shorter vector in *L*.

Introduction	Lattices	SIS and LWE	LWE-based encryption	Conclusion
00	0000000	000000000	00000000	000

Worst-case to average-case reduction $(\gamma \approx n\beta, q \geq \sqrt{n}\beta)$

Any efficient $SIS_{\beta,q,m}$ algorithm succeeding with non-negligible probability leads to an efficient $SIVP_{\gamma}$ algorithm.

(See [MP13] for smaller q)

- Start with a short basis *B* of the lattice $L \subseteq \mathbb{Z}^n$.
- Sample *m* short random lattice points $(\mathbf{y}_i)_{i \leq m}$.
- Look at their coordinates with respect to *B*, reduced modulo *q*. These form a SIS instance *A*.
- The SIS oracle gives $\mathbf{x} \in \mathbb{Z}^m$ short s.t. $\mathbf{x}^T \cdot A = \mathbf{0}$ [q].
- $\frac{1}{a} \sum x_i \mathbf{y}_i$ is a shorter vector in *L*.

Introduction	Lattices	SIS and LWE	LWE-based encryption	Conclusion
00	0000000	000000000	00000000	000

Worst-case to average-case reduction $(\gamma \approx n\beta, q \geq \sqrt{n}\beta)$

Any efficient $SIS_{\beta,q,m}$ algorithm succeeding with non-negligible probability leads to an efficient $SIVP_{\gamma}$ algorithm.

(See [MP13] for smaller q)

- Start with a short basis *B* of the lattice $L \subseteq \mathbb{Z}^n$.
- Sample *m* short random lattice points $(\mathbf{y}_i)_{i \leq m}$.
- Look at their coordinates with respect to *B*, reduced modulo *q*. These form a SIS instance *A*.
- The SIS oracle gives $\mathbf{x} \in \mathbb{Z}^m$ short s.t. $\mathbf{x}^T \cdot A = \mathbf{0}$ [q].
- $\frac{1}{q} \sum x_i \mathbf{y}_i$ is a shorter vector in *L*.

Introduction	Lattices	SIS and LWE	LWE-based encryption	Conclusion
00	0000000	000000000	00000000	000

Worst-case to average-case reduction $(\gamma \approx n\beta, q \geq \sqrt{n}\beta)$

Any efficient $SIS_{\beta,q,m}$ algorithm succeeding with non-negligible probability leads to an efficient $SIVP_{\gamma}$ algorithm.

(See [MP13] for smaller q)

- Start with a short basis *B* of the lattice $L \subseteq \mathbb{Z}^n$.
- Sample *m* short random lattice points $(\mathbf{y}_i)_{i \leq m}$.
- Look at their coordinates with respect to *B*, reduced modulo *q*. These form a SIS instance *A*.
- The SIS oracle gives $\mathbf{x} \in \mathbb{Z}^m$ short s.t. $\mathbf{x}^T \cdot A = \mathbf{0}$ [q].
- $\frac{1}{q} \sum x_i \mathbf{y}_i$ is a shorter vector in *L*.
- Repeat to get a basis shorter than the initial one.
- Repeat to get shorter and shorter bases of L

Introduction	Lattices	SIS and LWE	LWE-based encryption	Conclusion
00	0000000	000000000	00000000	000

Worst-case to average-case reduction $(\gamma \approx n\beta, q \geq \sqrt{n}\beta)$

Any efficient $SIS_{\beta,q,m}$ algorithm succeeding with non-negligible probability leads to an efficient $SIVP_{\gamma}$ algorithm.

(See [MP13] for smaller q)

- Start with a short basis *B* of the lattice $L \subseteq \mathbb{Z}^n$.
- Sample *m* short random lattice points $(\mathbf{y}_i)_{i \leq m}$.
- Look at their coordinates with respect to *B*, reduced modulo *q*. These form a SIS instance *A*.
- The SIS oracle gives $\mathbf{x} \in \mathbb{Z}^m$ short s.t. $\mathbf{x}^T \cdot A = \mathbf{0}$ [q].
- $\frac{1}{q} \sum x_i \mathbf{y}_i$ is a shorter vector in *L*.
- Repeat to get a basis shorter than the initial one.
- Repeat to get shorter and shorter bases of *L*.
| Introduction | Lattices | SIS and LWE | LWE-based encryption | Conclusion |
|-----------------------|--------------|-------------|----------------------|------------|
| 00 | 00000000 | 0000000000 | | 000 |
| $LWE_{\alpha,\alpha}$ | 7 [Regev'05] | | | |

Let $\mathbf{s} \in \mathbb{Z}_{q}^{n}$. Let $D_{\mathbf{s},\alpha}$ be the distribution corresponding to:

$$(\mathbf{a}; \langle \mathbf{a}, \mathbf{s} \rangle + e \ [q])$$
 with $\mathbf{a} \leftrightarrow U(\mathbb{Z}_q^n), \ e \leftrightarrow \lfloor \nu_{\alpha q} \rceil$,

where $\nu_{\alpha q}$ denotes the continuous Gaussian of st. dev. αq .

The Learning With Errors Problem — Search-LWE $_{lpha}$

Let $\mathbf{s} \in \mathbb{Z}_q^n$. Given arbitrarily many samples from $D_{\mathbf{s}, \alpha}$, find \mathbf{s} .

Introduction	Lattices	SIS and LWE	LWE-based encryption	Conclusion
00	0000000	0000000000	00000000	000

LWE as a lattice problem

Search-LWE $_{\alpha}$

Let $\mathbf{s} \in \mathbb{Z}_q^n$. Given $(A; A\mathbf{s} + \mathbf{e} [q])$ with $A \leftrightarrow U(\mathbb{Z}_q^{m \times n})$ and $\mathbf{e} \leftarrow \lfloor \nu_{\alpha q}^m \rfloor$ for and arbitrary m, find \mathbf{s} .

Remember our lattice example $L_A = A \cdot \mathbb{Z}_a^n + q \cdot \mathbb{Z}^m$.

- If $\alpha \approx$ 0, then LWE is easy to solve.
- If $lpha \gg 1$, then LWE is trivially hard.
- In between: interesting.

LWE is an average-case BDD.

Introduction	Lattices	SIS and LWE	LWE-based encryption	Conclusion
00	0000000	0000000000	00000000	000

LWE as a lattice problem

Search-LWE $_{\alpha}$

Let $\mathbf{s} \in \mathbb{Z}_q^n$. Given $(A; A\mathbf{s} + \mathbf{e} [q])$ with $A \leftrightarrow U(\mathbb{Z}_q^{m \times n})$ and $\mathbf{e} \leftarrow \lfloor \nu_{\alpha q}^m \rfloor$ for and arbitrary m, find \mathbf{s} .

Remember our lattice example $L_A = A \cdot \mathbb{Z}_q^n + q \cdot \mathbb{Z}^m$.

- If $\alpha \approx$ 0, then LWE is easy to solve.
- If $\alpha \gg 1$, then LWE is trivially hard.
- In between: interesting.

LWE is an average-case BDD.

How hard i	s IWF?	[Regev05]		
Introduction OO	Lattices 00000000	SIS and LWE	LWE-based encryption	Conclusion 000

Quantum worst-case to average-case reduction $(\gamma \approx n/\alpha, \alpha q \geq \sqrt{n})$

Assume that q is prime and $\mathcal{P}oly(n)$. Any efficient LWE_{n,α,q} algorithm succeeding with non-negligible probability leads to an efficient **quantum** SIVP $_{\gamma}$ algorithm.

How hard i	s IWF?	[Regev05]		
Introduction OO	Lattices 00000000	SIS and LWE	LWE-based encryption	Conclusion 000

Quantum worst-case to average-case reduction $(\gamma \approx n/\alpha, \alpha q \geq \sqrt{n})$

Assume that q is prime and $\mathcal{P}oly(n)$. Any efficient LWE_{n,α,q} algorithm succeeding with non-negligible probability leads to an efficient **quantum** SIVP $_{\gamma}$ algorithm.

Lattices	SIS and LWE	LWE-based encryption	Conclusion
	00000000000		
	[D 0-]		

How hard is LWE? [Regev05]

Quantum worst-case to average-case reduction $(\gamma \approx n/\alpha, \ \alpha q \ge \sqrt{n})$

Assume that q is prime and $\mathcal{P}oly(n)$. Any efficient LWE_{*n*, α ,q} algorithm succeeding with non-negligible probability leads to an efficient **quantum** SIVP_{γ} algorithm.

- [Peikert09]: classical reduction, for $q \approx 2^n$, from BDD.
- [SSTX09]: simpler (but weaker) quantum reduction, from SIS.
- [BLPRS13]: de-quantized reduction, for any q that is at least some $\mathcal{P}oly(n)$, from a weaker worst-case lattice problem.
- [BKSW18]: yet another quantum reduction, from BDD.

00	0000000	00000000000	00000000	000
Introduction	Lattices	SIS and LWE	LWE-based encryption	Conclusion

Decision LWE

$$D_{\mathbf{s},lpha}: (\mathbf{a}; \langle \mathbf{a}, \mathbf{s}
angle + e[q]) \text{ with } \mathbf{a} \leftarrow U(\mathbb{Z}_q^n), \ e \leftarrow \lfloor
u_{lpha q}
ceil.$$

Search-LWE $_{\alpha}$

Let $\mathbf{s} \in \mathbb{Z}_q^n$. Given arbitrarily many samples from $D_{\mathbf{s}, \alpha}$, find \mathbf{s} .

$\mathsf{Dec} extsf{-}\mathsf{LWE}_lpha$

Let $\mathbf{s} \leftrightarrow U(\mathbb{Z}_q^n)$. With non-negligible probability over \mathbf{s} , distinguish between an oracle access to $D_{\mathbf{s},\alpha}$ or an oracle access to $U(\mathbb{Z}_q^{n+1})$.

00	0000000	00000000000	00000000	000
Introduction	Lattices	SIS and LWE	LWE-based encryption	Conclusion

Decision LWE

$$D_{\mathbf{s},lpha}: (\mathbf{a}; \langle \mathbf{a}, \mathbf{s}
angle + e[q]) \text{ with } \mathbf{a} \leftarrow U(\mathbb{Z}_q^n), \ e \leftarrow \lfloor
u_{lpha q}
ceil.$$

Search-LWE $_{\alpha}$

Let $\mathbf{s} \in \mathbb{Z}_q^n$. Given arbitrarily many samples from $D_{\mathbf{s}, \alpha}$, find \mathbf{s} .

$\mathsf{Dec}\text{-}\mathsf{LWE}_{\alpha}$

Let $\mathbf{s} \leftarrow U(\mathbb{Z}_q^n)$. With non-negligible probability over \mathbf{s} , distinguish between an oracle access to $D_{\mathbf{s},\alpha}$ or an oracle access to $U(\mathbb{Z}_q^{n+1})$.

00	0000000	000000000000	00000000	000
Introduction	Lattices	SIS and LWE	LWE-based encryption	Conclusion

Decision LWE

$$D_{\mathbf{s},lpha}$$
: $(\mathbf{a}; \langle \mathbf{a}, \mathbf{s}
angle + e[q])$ with $\mathbf{a} \leftarrow U(\mathbb{Z}_q^n), \ e \leftarrow \lfloor
u_{lpha q}
ceil.$

Search-LWE $_{\alpha}$

Let $\mathbf{s} \in \mathbb{Z}_q^n$. Given arbitrarily many samples from $D_{\mathbf{s}, \alpha}$, find \mathbf{s} .

$\mathsf{Dec}\text{-}\mathsf{LWE}_{\alpha}$

Let $\mathbf{s} \leftarrow U(\mathbb{Z}_q^n)$. With non-negligible probability over \mathbf{s} , distinguish between an oracle access to $D_{\mathbf{s},\alpha}$ or an oracle access to $U(\mathbb{Z}_q^{n+1})$.

Dec-LWE and Search-LWE efficiently reduce to one another.

Lattices	SIS and LWE	LWE-based encryption	Conclusion
	00000000000		

Decision LWE and SIS

Introduction	Lattices	SIS and LWE	LWE-based encryption	Conclusion
00	00000000	000000000●0		000
Nice pror	perties of LM	/E		

- Arbitrary number of samples
 ⇒ can amplify success probability and distinguishing advantage.
- andom self-reducibility
 ⇒ solving for a non-negligible fraction of s's suffices.

 $(A, A \cdot \mathbf{s} + \mathbf{e}) + (0, A \cdot \mathbf{t}) = (A, A \cdot (\mathbf{s} + \mathbf{t}) + \mathbf{e})$

A distinguishing oracle allows to check a guess for a coordinate of s.
 These lead to a search-to-decision reduction.

- Can take different types of noises:
 - Discrete Gaussian
 - Uniform integer in an interval
 - Deterministic, using rounding

Introduction	Lattices	SIS and LWE	LWE-based encryption	Conclusion
00	00000000	000000000●0		000
Nice pror	perties of IM	/F		

- Arbitrary number of samples
 - \Rightarrow can amplify success probability and distinguishing advantage.
- Pandom self-reducibility
 - \Rightarrow solving for a non-negligible fraction of **s**'s suffices.

$$(A, A \cdot \mathbf{s} + \mathbf{e}) + (0, A \cdot \mathbf{t}) = (A, A \cdot (\mathbf{s} + \mathbf{t}) + \mathbf{e})$$

A distinguishing oracle allows to check a guess for a coordinate of s.
 These lead to a search-to-decision reduction.

- Can take different types of noises:
 - Discrete Gaussian
 - Uniform integer in an interval
 - Deterministic, using rounding

Introduction	Lattices	SIS and LWE	LWE-based encryption	Conclusion
00	0000000	000000000●0		000
Nice pror	perties of LM	/E		

- Arbitrary number of samples
 ⇒ can amplify success probability and distinguishing advantage.
- Sandom self-reducibility ⇒ solving for a non-negligible fraction of s's suffices.

$$(A, A \cdot \mathbf{s} + \mathbf{e}) + (0, A \cdot \mathbf{t}) = (A, A \cdot (\mathbf{s} + \mathbf{t}) + \mathbf{e})$$

A distinguishing oracle allows to check a guess for a coordinate of s.
 These lead to a search-to-decision reduction.

- Can take different types of noises
 - Discrete Gaussian
 - Uniform integer in an interval
 - Deterministic, using rounding

Introduction	Lattices	SIS and LWE	LWE-based encryption	Conclusion
00	0000000	000000000●0		000
Nice pror	perties of LM	/E		

- Arbitrary number of samples
 ⇒ can amplify success probability and distinguishing advantage.
- Is and on self-reducibility ⇒ solving for a non-negligible fraction of s's suffices.

$$(A, A \cdot \mathbf{s} + \mathbf{e}) + (0, A \cdot \mathbf{t}) = (A, A \cdot (\mathbf{s} + \mathbf{t}) + \mathbf{e})$$

• A distinguishing oracle allows to check a guess for a coordinate of s. These lead to a search-to-decision reduction.

- Gan take different types of noises:
 - Discrete Gaussian
 - Uniform integer in an interval
 - Deterministic, using rounding

Lattices	SIS and LWE	LWE-based encryption	Conclusion
	000000000		

Selected problems on $\mathsf{SIS}/\mathsf{LWE}$

- Can we get hardness of SIS/LWE based on SIVP with approximation factor less than *n*?
- Can we reduce SVP $_{\gamma}$ to SIS/LWE?
- Can we get a classical reduction from SIVP to LWE with parameters equivalent to those of Regev's quantum reduction?
- Or is this discrepancy intrinsic and there is a quantum acceleration for solving LWE and SIVP?

Lattices	SIS and LWE	LWE-based encryption	Conclusion
	000000000		

Selected problems on SIS/LWE

- Can we get hardness of SIS/LWE based on SIVP with approximation factor less than *n*?
- Can we reduce SVP_{γ} to SIS/LWE?
- Can we get a classical reduction from SIVP to LWE with parameters equivalent to those of Regev's quantum reduction?
- Or is this discrepancy intrinsic and there is a quantum acceleration for solving LWE and SIVP?

Lattices	SIS and LWE	LWE-based encryption	Conclusion
	000000000		

Selected problems on SIS/LWE

- Can we get hardness of SIS/LWE based on SIVP with approximation factor less than *n*?
- Can we reduce SVP_{γ} to SIS/LWE?
- Can we get a classical reduction from SIVP to LWE with parameters equivalent to those of Regev's quantum reduction?
- Or is this discrepancy intrinsic and there is a quantum acceleration for solving LWE and SIVP?

	Lattices	SIS and LWE	LWE-based encryption	Conclusion
00	0000000	0000000000	00000000	000
Plan for	this lecture			

- Background on Euclidean lattices.
- The SIS and LWE problems.
- **Incrypting from LWE.**

SVP/SIVP/CVP/BDD are here only implicitly:

(almost) no need to know lattices for designing lattice-based schemes!

Lattices	SIS and LWE	LWE-based encryption	Conclusion
		00000000	

LWE with small secret

Small-secret-LWE $_{\alpha}$

Let $\mathbf{s} \leftarrow \lfloor \nu_{\alpha q} \rceil^n$. With non-negligible probability over \mathbf{s} , distinguish between (arbitrarily many) samples from $D_{\mathbf{s},\alpha}$ or from $U(\mathbb{Z}_a^{n+1})$.

Lattices	SIS and LWE	LWE-based encryption	Conclusion
		00000000	

LWE-based encryption

Introduction 00	Lattices 00000000	SIS and LWE	LWE-based encryption	Conclusion 000
Decrypti	on correctne	SS		

To ensure correctness, it suffices that

$$\left|\mathbf{t}^{T}\mathbf{e} + \mathbf{f}^{T}(-\mathbf{s}|1)\right| < q/4,$$

with probability very close to 1.

Up to the roundings of Gaussians:

- Gaussian tail bound $\Rightarrow \|\mathbf{t}\|, \|\mathbf{e}\|, \|\mathbf{f}\|, \|\mathbf{s}\| \lesssim \sqrt{n} \alpha q$ with probability $1 - 2^{-\Omega(n)}$.
- It suffices that $(\sqrt{n}\alpha q)^2 \lesssim q/4$, i.e., $\alpha \lesssim 1/(n\sqrt{q})$.

Better:

- $\mathbf{t}^T \mathbf{e}$ is a 1-dim Gaussian of parameter $\alpha \boldsymbol{q} \| \mathbf{e} \|$.
- Gaussian tail bound $\Rightarrow |\mathbf{t}^T \mathbf{e}| \le \sqrt{n \log n} \cdot (\alpha q)^2$ with probability $\ge 1 1/\mathcal{P}oly(n)$.
- It suffices that $\alpha \lesssim 1/\sqrt{qn\log n}$.

Introduction	Lattices	SIS and LWE	LWE-based encryption	Conclusion
00	0000000	0000000000		000
Decryption	correctness			

To ensure correctness, it suffices that

$$\left|\mathbf{t}^{T}\mathbf{e} + \mathbf{f}^{T}(-\mathbf{s}|1)\right| < q/4,$$

with probability very close to 1.

Up to the roundings of Gaussians:

- Gaussian tail bound $\Rightarrow \|\mathbf{t}\|, \|\mathbf{e}\|, \|\mathbf{f}\|, \|\mathbf{s}\| \lesssim \sqrt{n} \alpha q$ with probability $1 - 2^{-\Omega(n)}$.
- It suffices that $(\sqrt{n}\alpha q)^2 \lesssim q/4$, i.e., $\alpha \lesssim 1/(n\sqrt{q})$.

Better:

- $\mathbf{t}^T \mathbf{e}$ is a 1-dim Gaussian of parameter $\alpha q \| \mathbf{e} \|$.
- Gaussian tail bound $\Rightarrow |\mathbf{t}^T \mathbf{e}| \le \sqrt{n \log n} \cdot (\alpha q)^2$ with probability $\ge 1 1/\mathcal{P}oly(n)$.
- It suffices that $\alpha \lesssim 1/\sqrt{qn\log n}$.

Introduction	Lattices	SIS and LWE	LWE-based encryption	Conclusion
00	0000000	0000000000		000
Decryption	correctness			

To ensure correctness, it suffices that

$$|\mathbf{t}^T \mathbf{e} + \mathbf{f}^T (-\mathbf{s}|1)| < q/4,$$

with probability very close to 1.

Up to the roundings of Gaussians:

- Gaussian tail bound $\Rightarrow \|\mathbf{t}\|, \|\mathbf{e}\|, \|\mathbf{f}\|, \|\mathbf{s}\| \lesssim \sqrt{n} \alpha q$ with probability $1 - 2^{-\Omega(n)}$.
- It suffices that $(\sqrt{n}\alpha q)^2 \lesssim q/4$, i.e., $\alpha \lesssim 1/(n\sqrt{q})$.

Better:

- $\mathbf{t}^T \mathbf{e}$ is a 1-dim Gaussian of parameter $\alpha q \| \mathbf{e} \|$.
- Gaussian tail bound $\Rightarrow |\mathbf{t}^T \mathbf{e}| \le \sqrt{n \log n} \cdot (\alpha q)^2$ with probability $\ge 1 1/\mathcal{P}oly(n)$.
- It suffices that $\alpha \lesssim 1/\sqrt{qn\log n}$.

Introduction	Lattices	SIS and LWE	LWE-based encryption	Conclusion
00	00000000	0000000000		000
Do decrv	ption errors	matter?		

- We can cut Gaussian tails and use the first error bound to guarantee perfect correctness.
- The probability is quite close to 1, so it does not matter much.
- We can use an error correcting code to boost the correct decryption probability.

For security against chosen ciphertext attacks, it does matter ([HHK17,AGJNVV19], 2017/604, 2018/1089, 2019/043). \Rightarrow tune parameters to make it very small.

	Lattices	SIS and LWE	LWE-based encryption	Conclusion
			00000000	
Do decry	untion errors	matter?		
		matter.		

- We can cut Gaussian tails and use the first error bound to guarantee perfect correctness.
- The probability is quite close to 1, so it does not matter much.
- We can use an error correcting code to boost the correct decryption probability.

For security against chosen ciphertext attacks, it does matter ([HHK17,AGJNVV19], 2017/604, 2018/1089, 2019/043). \Rightarrow tune parameters to make it very small.

Lattices	SIS and LWE	LWE-based encryption	Conclusion
		00000000	

Passive security (IND-CPA)

Lattices	SIS and LWE	LWE-based encryption	Conclusion
		000000000	

Passive security (IND-CPA)

Introduction	Lattices	SIS and LWE	LWE-based encryption	Conclusion
00	00000000	0000000000		000
Setting pa	arameters	(asymptotically)		

How do we choose *n*, α and *q*?

Minimize bandwidth/key-size/run-times under the conditions that:

- Correctness holds
- Some security is guaranteed

Take $\sqrt{n}/q \approx 1/\sqrt{qn \log n}$, i.e., $q \approx n^2 \log n$. Take $\alpha \approx \sqrt{n}/q \approx 1/(n^{3/2} \log n)$.

SIVP_{γ} in dimension *n* quantumly reduces to LWE_{*n*, α ,*q*} for $\gamma \approx n/\alpha$.

Introduction 00	Lattices 00000000	SIS and LWE 0000000000	LWE-based encryption	Conclusion 000
Setting p	arameters	(asymptotically)		

How do we choose n, α and q?

Minimize bandwidth/key-size/run-times under the conditions that:

- Correctness holds
- Some security is guaranteed

Take $\sqrt{n}/q \approx 1/\sqrt{qn \log n}$, i.e., $q \approx n^2 \log n$. Take $\alpha \approx \sqrt{n}/q \approx 1/(n^{3/2} \log n)$.

SIVP_{γ} in dimension *n* quantumly reduces to LWE_{*n*, α ,*q*} for $\gamma \approx n/\alpha$.

Introduction 00	Lattices 00000000	SIS and LWE 0000000000	LWE-based encryption	Conclusion 000
Setting p	arameters	(asymptotically)		

How do we choose *n*, α and *q*?

Minimize bandwidth/key-size/run-times under the conditions that:

- Correctness holds $\alpha \leq 1/\sqrt{qn\log n}$
- Some security is guaranteed $\alpha q > \sqrt{n}$

Take $\sqrt{n}/q \approx 1/\sqrt{qn\log n}$, i.e., $q \approx n^2 \log n$. Take $\alpha \approx \sqrt{n}/q \approx 1/(n^{3/2} \log n)$.

Setting r	arameters	(asymptotically)		
00	00000000	0000000000		000
In the stretters	1	CIC and INVE	IVA/E based an emination	Construction

parameters (asymptotically)

How do we choose *n*, α and *q*?

Minimize bandwidth/key-size/run-times under the conditions that:

- Correctness holds $\alpha \leq 1/\sqrt{qn\log n}$
- Some security is guaranteed $\alpha q > \sqrt{n}$

Take $\sqrt{n}/q \approx 1/\sqrt{qn\log n}$, i.e., $q \approx n^2 \log n$. Take $\alpha \approx \sqrt{n}/q \approx 1/(n^{3/2} \log n)$.

SIVP_{γ} in dimension *n* quantumly reduces to LWE_{*n*, α ,*a*} for $\gamma \approx n/\alpha$.

Introduction	Lattices	SIS and LWE	LWE-based encryption	Conclusion
00	0000000	0000000000	000000000	000

From passive to active security

IND-CCA security

The encryptions of two plaintexts chosen by the adversary \mathcal{A} should remain indistinguishable in \mathcal{A} 's view, even if \mathcal{A} can request decryptions of ciphertexts of its choice (except the challenge ciphertexts).

How do we upgrade IND-CPA security to IND-CCA security?

- **OAEP**: requires decryption to recover the encryption randomness This is not our case: we recover $\mathbf{t}^T \mathbf{e} + \mathbf{f}^T(-\mathbf{s}|1)$.
- Fujisaki-Okamoto: upgraded decryption uses initial encryption and decryption algorithms.
- FO is secure in the **random oracle model**, if decryption errors occur with exponentially small probability.
- FO is also secure in the **quantum random oracle model**, but with a big advantage loss.

D. Hofheinz, K. Hövelmanns, E. Kiltz. A modular analysis of the Fujisaki-Okamoto transformation. Eprint 2017/604.

	Lattices	SIS and LWE	LWE-based encryption	Conclusion
00	0000000	0000000000	00000000	000

Selected problems on LWE encryption

- Do the diverse noise distributions have an impact?
- What is the exact impact of decryption failures to CCA security of the FO upgrade?
- Can we get efficient CCA security without the random oracle heuristic?

	Lattices	SIS and LWE	LWE-based encryption	Conclusion
			00000000	
-				

Selected problems on LWE encryption

- Do the diverse noise distributions have an impact?
- What is the exact impact of decryption failures to CCA security of the FO upgrade?
- Can we get efficient CCA security without the random oracle heuristic?

Lattices	SIS and LWE	LWE-based encryption	Conclusion
		00000000	

Selected problems on LWE encryption

- Do the diverse noise distributions have an impact?
- What is the exact impact of decryption failures to CCA security of the FO upgrade?
- Can we get efficient CCA security without the random oracle heuristic?

Introduction 00	Lattices 0000000	SIS and LWE	LWE-based encryption	Conclusion ●00
Plan for	this lecture			

- Background on Euclidean lattices.
- The SIS and LWE problems.
- S Encrypting from LWE.
| | Lattices | SIS and LWE | LWE-based encryption | Conclusion | | | |
|-------------|----------|-------------|----------------------|------------|--|--|--|
| 00 | 0000000 | 0000000000 | 00000000 | 000 | | | |
| | | | | | | | |
| Wrapping up | | | | | | | |

Lattices ae conjectured to provide exponentially hard worst-case problems, even for quantum algorithms.

SIS and LWE are average-case variants that are proved to be no easier than some such hard lattice problems.

- There is no fundamental weakness in SIS/LWE, compared to worst-case lattices.
- The reductions are not meant for setting parameters, but for ensuring that there is no fundamental weakness.
- Average-case problems are better suited for cryptographic design.

SIS and LWE are linear algebra problems.

- Leads to simple cryptographic design.
- Allows advanced cryptographic constructions.

Introduction 00	Lattices 0000000	SIS and LWE	LWE-based encryption	Conclusion OO●
Next time				

- Signing from SIS
- Efficient variants of SIS/LWE
- NTRU