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Lattice-based cryptography

Maybe the most mature approach for post-quantum crypto.
Allows advanced cryptographic constructions
(homomorphic enc., some functional enc., some program obfuscation, etc)

Topics covered in this mini-course:

1 Hardness foundations: what are the assumptions?

2 Basic schemes: encrypting and signing

3 Fast(er) schemes using algebraic lattices

References:

C. Peikert: a decade of lattice-based cryptography

eprint 2015/939

NewHope, Frodo, Kyber and Dilithium

eprint 2015/1092, 2016/659, 2017/633 and 2017/634
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Plan for this lecture

1 Background on Euclidean lattices.

2 The SIS and LWE problems.

3 Encrypting from LWE.
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Euclidean lattices

Lattice ≡ discrete subgroup of Rn

≡ {
∑

i≤n xibi : xi ∈ Z}

If the bi ’s are linearly independent,
they are called a basis.

Bases are not unique, but they can be
obtained from each other by integer trans-
forms of determinant ±1:[

−2 1
10 6

]
=

[
4 −3
2 4

]
·
[

1 1
2 1

]
.
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Lattice invariants

Dimension: n.

First minimum:
λ1 = min(‖b‖ : b ∈ L \ 0).

Successive minima: (k ≤ n)
λk = min(r : dim span(L∩B(r)) ≥ k).

Lattice determinant:
det L = | det(bi )i |, for any basis.

Minkowski theorem:
λ1(L) ≤

√
n · (det L)1/n.
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An example: construction A lattices

Construction A. Let m ≥ n ≥ 1 and q ≥ 2 prime (for tranquility)

Let A ∈ Zm×n
q . Then L(A) := A · Zn

q + q · Zm is a lattice.

Dimension: m
Determinant, for full-rank A: qm−n
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An example: construction A lattices

Construction A. Let m ≥ n ≥ 1 and q ≥ 2 prime (for tranquility)

Let A ∈ Zm×n
q . Then L(A) := A · Zn

q + q · Zm is a lattice.

(For full-rank A.) Dim: m, det: qm−n
Minkowski︷︸︸︷
=⇒ λ1(L(A)) ≤

√
m · q1−n/m.

PrA[λ1 ≤ B] = PrA
[
∃s ∈ Zn

q,b ∈ Zm : 0 < ‖b‖ < B ∧ b = A · s [q]
]

≤
∑

s

∑
b

max
s,b

PrA[A · s = b [q]]

. qn · (B/
√
m)m ·max

s,b
PrA[A · s = b [q]]

. qn · (B/
√
m)m · q−m

(Third step requires B ≥
√
m, last step requires B < q)

Overall, if q = Ω(
√
m), with probability ≈ 1 over a uniform A:

λ1(L(A)) ≥ Ω
(

min(q,
√
m · q1−n/m)

)
.
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Another example

Let m ≥ n ≥ 1 and q ≥ 2 prime.

Construction A for the orthogonal code

Let A ∈ Zm×n
q . Then A⊥ = {x ∈ Zm : xT · A = 0 [q]} is a lattice.

Dimension: m

Determinant: qrk(A).

λ1 ≈ min(
√
n log q,

√
mqn/m), with probability ≈ 1 for a uniform A.
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SVP and SIVP

The Shortest Vector Problem: SVPγ

Given a basis of L, find b ∈ L \ 0 such that: ‖b‖ ≤ γ · λ(L).
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SVP and SIVP

The Shortest Vector Problem: SVPγ

Given a basis of L, find b ∈ L \ 0 such that: ‖b‖ ≤ γ · λ(L).

The Shortest Independent Vectors Problem: SIVPγ

Given a basis of L, find b1, . . . ,bn ∈ L lin. indep. such that:
max ‖bi‖ ≤ γ · λn(L).
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SVP and SIVP

The Shortest Vector Problem: SVPγ

Given a basis of L, find b ∈ L \ 0 such that: ‖b‖ ≤ γ · λ(L).

The Shortest Independent Vectors Problem: SIVPγ

Given a basis of L, find b1, . . . ,bn ∈ L lin. indep. such that:
max ‖bi‖ ≤ γ · λn(L).

NP-hard when γ = O(1) (under randomized reductions for SVP).

In lattice-based crypto: γ = Poly(n) (most often).

Solvable in polynomial time when γ = 2Õ(n).
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CVP and BDD

The Closest Vector Problem: CVPγ

Given a basis of L and a target t ∈ Qn, find b ∈ L such that:
‖b− t‖ ≤ γ ·min(‖c− t‖ : c ∈ L).

BDDγ (Bounded Distance Decoding)

Find the closest b ∈ L to t, under the promise that ‖b− t‖ ≤ λ1(L)/γ.
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Hardness

All known algorithms for SVP, SIVP, CVP, BDD
with γ = Poly(n) cost 2Ω(n).

Same landscape if we allow quantum algorithms.

Open problems

How equivalent are these problems? See survey by Noah Stephens-Davidowitz

Can we beat the 2Ω(n) cost barrier?

But these are worst-case problems, and worst-case hardness is not
convenient for cryptographic purposes.
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Damien Stehlé Introduction to lattice-based cryptography 19/03/2019 11/34



Introduction Lattices SIS and LWE LWE-based encryption Conclusion

Plan for this lecture

1 Background on Euclidean lattices.

2 The SIS and LWE problems.

3 Encrypting from LWE.
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SISβ,q,m [Ajtai’96]

The Short Integer Solution Problem

Given a uniform A ∈ Zm×n
q , find x ∈ Zm \ 0 such that:

‖x‖ ≤ β and xT · A = 0 mod q.
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SIS as a lattice problem

Remember our lattice example:

A⊥ = {x ∈ Zm : xT · A = 0 [q]}.

SIS consists in finding a short non-zero vector in A⊥, for a random A.

If β < λ1 ≈ min(
√
n log q,

√
mqn/m): trivially hard.

If β ≥ q: trivially easy.

In between: interesting.

SIS is an average-case SVP/SIVP.
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Hardness of SIS? [Ajtai96,...,GPV08]

Worst-case to average-case reduction (γ ≈ nβ, q ≥
√
nβ)

Any efficient SISβ,q,m algorithm succeeding with non-negligible
probability leads to an efficient SIVPγ algorithm.
(See [MP13] for smaller q)
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Hardness of SIS? [Ajtai96,...,GPV08]

Worst-case to average-case reduction (γ ≈ nβ, q ≥
√
nβ)

Any efficient SISβ,q,m algorithm succeeding with non-negligible
probability leads to an efficient SIVPγ algorithm.
(See [MP13] for smaller q)

Sketch:

Start with a short basis B of the lattice L ⊆ Zn.

Sample m short random lattice points (yi )i≤m.

Look at their coordinates with respect to B, reduced modulo q.
These form a SIS instance A.

The SIS oracle gives x ∈ Zm short s.t. xT · A = 0 [q].
1
q

∑
xiyi is a shorter vector in L.
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Damien Stehlé Introduction to lattice-based cryptography 19/03/2019 15/34



Introduction Lattices SIS and LWE LWE-based encryption Conclusion

Hardness of SIS? [Ajtai96,...,GPV08]

Worst-case to average-case reduction (γ ≈ nβ, q ≥
√
nβ)

Any efficient SISβ,q,m algorithm succeeding with non-negligible
probability leads to an efficient SIVPγ algorithm.
(See [MP13] for smaller q)

Sketch:

Start with a short basis B of the lattice L ⊆ Zn.

Sample m short random lattice points (yi )i≤m.

Look at their coordinates with respect to B, reduced modulo q.
These form a SIS instance A.

The SIS oracle gives x ∈ Zm short s.t. xT · A = 0 [q].
1
q

∑
xiyi is a shorter vector in L.
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Hardness of SIS? [Ajtai96,...,GPV08]

Worst-case to average-case reduction (γ ≈ nβ, q ≥
√
nβ)

Any efficient SISβ,q,m algorithm succeeding with non-negligible
probability leads to an efficient SIVPγ algorithm.
(See [MP13] for smaller q)

Sketch:

Start with a short basis B of the lattice L ⊆ Zn.

Sample m short random lattice points (yi )i≤m.

Look at their coordinates with respect to B, reduced modulo q.
These form a SIS instance A.

The SIS oracle gives x ∈ Zm short s.t. xT · A = 0 [q].
1
q

∑
xiyi is a shorter vector in L.

Repeat to get a basis shorter than the initial one.

Repeat to get shorter and shorter bases of L.
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LWEα,q [Regev’05]

Let s ∈ Zn
q. Let Ds,α be the distribution corresponding to:

(a; 〈a, s〉+ e [q]) with a←↩ U(Zn
q), e ←↩ bναqe,

where ναq denotes the continuous Gaussian of st. dev. αq.

The Learning With Errors Problem — Search-LWEα

Let s ∈ Zn
q. Given arbitrarily many samples from Ds,α, find s.
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LWE as a lattice problem

Search-LWEα

Let s ∈ Zn
q. Given (A;As + e [q]) with A←↩ U(Zm×n

q ) and e←↩ bνmαqe
for and arbitrary m, find s.

Remember our lattice example LA = A · Zn
q + q · Zm.

If α ≈ 0, then LWE is easy to solve.

If α� 1, then LWE is trivially hard.

In between: interesting.

LWE is an average-case BDD.
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How hard is LWE? [Regev05]

Quantum worst-case to average-case reduction (γ ≈ n/α, αq ≥
√
n)

Assume that q is prime and Poly(n).
Any efficient LWEn,α,q algorithm succeeding with non-negligible
probability leads to an efficient quantum SIVPγ algorithm.
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How hard is LWE? [Regev05]

Quantum worst-case to average-case reduction (γ ≈ n/α, αq ≥
√
n)

Assume that q is prime and Poly(n).
Any efficient LWEn,α,q algorithm succeeding with non-negligible
probability leads to an efficient quantum SIVPγ algorithm.

[Peikert09]: classical reduction, for q ≈ 2n, from BDD.

[SSTX09]: simpler (but weaker) quantum reduction, from SIS.

[BLPRS13]: de-quantized reduction, for any q that is at least some
Poly(n), from a weaker worst-case lattice problem.

[BKSW18]: yet another quantum reduction, from BDD.
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Decision LWE

Ds,α : (a; 〈a, s〉+ e [q]) with a←↩ U(Zn
q), e ←↩ bναqe.

Search-LWEα

Let s ∈ Zn
q. Given arbitrarily many samples from Ds,α, find s.

Dec-LWEα

Let s←↩ U(Zn
q). With non-negligible probability over s, distinguish

between an oracle access to Ds,α or an oracle access to U(Zn+1
q ).
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Decision LWE

Ds,α : (a; 〈a, s〉+ e [q]) with a←↩ U(Zn
q), e ←↩ bναqe.

Search-LWEα

Let s ∈ Zn
q. Given arbitrarily many samples from Ds,α, find s.

Dec-LWEα

Let s←↩ U(Zn
q). With non-negligible probability over s, distinguish

between an oracle access to Ds,α or an oracle access to U(Zn+1
q ).

Dec-LWE and Search-LWE efficiently reduce to one another.
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Decision LWE and SIS
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Nice properties of LWE

1 Arbitrary number of samples
⇒ can amplify success probability and distinguishing advantage.

2 Random self-reducibility
⇒ solving for a non-negligible fraction of s’s suffices.

(A,A · s + e) + (0,A · t) = (A,A · (s + t) + e)

3 A distinguishing oracle allows to check a guess for a coordinate of s.

⇒ These lead to a search-to-decision reduction.

4 Can take different types of noises:

Discrete Gaussian
Uniform integer in an interval
Deterministic, using rounding
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Open problems

Selected problems on SIS/LWE

Can we get hardness of SIS/LWE based on SIVP with approximation
factor less than n?

Can we reduce SVPγ to SIS/LWE?

Can we get a classical reduction from SIVP to LWE with parameters
equivalent to those of Regev’s quantum reduction?

Or is this discrepancy intrinsic and there is a quantum acceleration
for solving LWE and SIVP?
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Plan for this lecture

1 Background on Euclidean lattices.

2 The SIS and LWE problems.

3 Encrypting from LWE.

SVP/SIVP/CVP/BDD are here only implicitly:
(almost) no need to know lattices for designing lattice-based schemes!
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LWE with small secret

Small-secret-LWEα

Let s←↩ bναqen. With non-negligible probability over s, distinguish
between (arbitrarily many) samples from Ds,α or from U(Zn+1

q ).
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LWE-based encryption
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Decryption correctness

To ensure correctness, it suffices that∣∣tTe + fT (−s|1)
∣∣ < q/4,

with probability very close to 1.

Up to the roundings of Gaussians:

Gaussian tail bound ⇒ ‖t‖, ‖e‖, ‖f‖, ‖s‖ .
√
nαq

with probability 1− 2−Ω(n).

It suffices that (
√
nαq)2 . q/4, i.e., α . 1/(n

√
q).

Better:

tTe is a 1-dim Gaussian of parameter αq‖e‖.
Gaussian tail bound ⇒ |tTe| ≤

√
n log n · (αq)2 with

probability ≥ 1− 1/Poly(n).

It suffices that α . 1/
√
qn log n.
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Do decryption errors matter?

We can cut Gaussian tails and use the first error bound to guarantee
perfect correctness.

The probability is quite close to 1, so it does not matter much.

We can use an error correcting code to boost the correct decryption
probability.

For security against chosen ciphertext attacks, it does matter
([HHK17,AGJNVV19], 2017/604, 2018/1089, 2019/043). ⇒ tune parameters to make
it very small.
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Passive security (IND-CPA)
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Setting parameters (asymptotically)

How do we choose n, α and q?

Minimize bandwidth/key-size/run-times under the conditions that:

Correctness holds

Some security is guaranteed

Take
√
n/q ≈ 1/

√
qn log n, i.e., q ≈ n2 log n.

Take α ≈
√
n/q ≈ 1/(n3/2 log n).

SIVPγ in dimension n quantumly reduces to LWEn,α,q for γ ≈ n/α.

Damien Stehlé Introduction to lattice-based cryptography 19/03/2019 29/34



Introduction Lattices SIS and LWE LWE-based encryption Conclusion

Setting parameters (asymptotically)

How do we choose n, α and q?

Minimize bandwidth/key-size/run-times under the conditions that:

Correctness holds

Some security is guaranteed

Take
√
n/q ≈ 1/

√
qn log n, i.e., q ≈ n2 log n.

Take α ≈
√
n/q ≈ 1/(n3/2 log n).

SIVPγ in dimension n quantumly reduces to LWEn,α,q for γ ≈ n/α.
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From passive to active security

IND-CCA security

The encryptions of two plaintexts chosen by the adversary A should
remain indistinguishable in A’s view, even if A can request decryptions
of ciphertexts of its choice (except the challenge ciphertexts).

How do we upgrade IND-CPA security to IND-CCA security?

OAEP: requires decryption to recover the encryption randomness
This is not our case: we recover tTe + fT (−s|1).

Fujisaki-Okamoto: upgraded decryption uses initial encryption and
decryption algorithms.

FO is secure in the random oracle model, if decryption errors occur
with exponentially small probability.

FO is also secure in the quantum random oracle model, but with
a big advantage loss.

D. Hofheinz, K. Hövelmanns, E. Kiltz. A modular analysis of the Fujisaki-Okamoto transformation. Eprint 2017/604.
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Open problems

Selected problems on LWE encryption

Do the diverse noise distributions have an impact?

What is the exact impact of decryption failures to CCA security of
the FO upgrade?

Can we get efficient CCA security without the random oracle
heuristic?
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Plan for this lecture

1 Background on Euclidean lattices.

2 The SIS and LWE problems.

3 Encrypting from LWE.
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Wrapping up

Lattices ae conjectured to provide exponentially hard worst-case
problems, even for quantum algorithms.

SIS and LWE are average-case variants that are proved to be no easier
than some such hard lattice problems.

There is no fundamental weakness in SIS/LWE,
compared to worst-case lattices.

The reductions are not meant for setting parameters,
but for ensuring that there is no fundamental weakness.

Average-case problems are better suited for cryptographic design.

SIS and LWE are linear algebra problems.

Leads to simple cryptographic design.

Allows advanced cryptographic constructions.
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Next time

Signing from SIS

Efficient variants of SIS/LWE

NTRU
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