
Christophe Petit - Aussois - March 2018 1

Isogeny-based cryptography:

cryptanalysis results

Christophe Petit

University of Birmingham

Christophe Petit - Aussois - March 2018 2

Isogeny-based cryptography

I Recently proposed for post-quantum cryptography

I Natural problems from a number theory point of view

I Some history, e.g. David Kohel’s PhD thesis in 1996

I Some still exponential time, even for quantum computers

Christophe Petit - Aussois - March 2018 3

Hard problems ?

I Isogeny computation problem (CGL hash, CSIDH) :
Given two randomly chosen isogenous elliptic curves,
compute an isogeny between them.

I Supersingular Isogeny Diffie-Hellman protocol :
Let p a prime such that 2e3f |(p − 1) and 2e ≈ 3f ≈ √p.
Given two supersingular elliptic curves E0,E1 over Fp2

connected by an isogeny ϕ : E0 → E1 of degree 2e , and
given the action of ϕ on the 3f -torsion, compute ϕ.

Christophe Petit - Aussois - March 2018 4

Outline

Computing isogenies (generic supersingular case)

Supersingular isogeny key exchange protocol

Computing isogenies (ordinary curves and CSIDH)

Christophe Petit - Aussois - March 2018 5

Outline

Computing isogenies (generic supersingular case)

Supersingular isogeny key exchange protocol

Computing isogenies (ordinary curves and CSIDH)

Christophe Petit - Aussois - March 2018 6

Charles-Goren-Lauter hash function [CGL08]

Katholieke Universiteit Leuven in Belgium.

Anticipating such a breakdown, Microsoft in

2005 banned both SHA-1 and MD5 from

new products and has removed MD5 from all

its current products, says Kristin Lauter, head

of the Cryptography Group at Microsoft

Research in Redmond, Washington. Fortu-

nately, a good backup is already available. In

2004, NIST issued several new standards,

collectively called SHA-2, which are more

secure than SHA-1 because they produce

longer hashes (up to 512 bits instead of 160).

But NIST worries that SHA-2 could even-

tually fall, too. “Everything that has been

attacked is in the same family,” says William

Burr of NIST’s Security Technology Group.

“It may turn out that they aren’t broken or

can’t be broken, but we didn’t want to get

caught out on the wrong side.”

After extensive debate, including two

international workshops in 2005 and 2006,

NIST decided that a new competition could

turn up completely new approaches to hash

functions. “We’ll be reluctant to pick some-

thing that looks just like SHA-2,” says Burr.

“We want some biodiversity.”

Although no designs have been formally

submitted yet—the deadline is in October—

experts predict that most entrants will con-

tinue to be iterative algorithms subtly

retooled to defeat the new kinds of attacks.

For instance, Preneel’s RIPEMD—one of the

few f irst-generation hash functions still

standing—performs two parallel iterations,

making it difficult for an attacker to figure

out which one to attack.

A second approach, called “provably

secure” hash functions, derives its presump-

tive security from math problems that are

considered to be hard to crack (see sidebar,

above). This type of algorithm typically does

not require multiple iterations, but it does

require cryptologists to put their faith in a

mathematical “black box.” Also, such algo-

rithms tend to be slower than iterative algo-

rithms because they require a more elaborate

calculation—even though it is performed

only once. Speed is at a premium for hash

functions, as they are typically used to tag a

document in the split-second it’s electroni-

cally transmitted.

Not surprisingly, mathematicians love

provably secure systems, whereas cryptolo-

gists have little use for them. “They are typi-

cally only provable with respect to one prop-

erty but are weak with respect to other proper-

ties,” says Joan Daemen of STMicroelectron-

ics, co-winner of the AES competition. For

instance, a “provably secure” hash developed

by Lenstra and his colleagues, called Very

Smooth Hash (VSH), was compromised last

year when Markku-Juhani Saarinen at a Span-

ish company called Kinamik showed that it

was easy to find “near-collisions” in VSH. In

practice, engineers often truncate a long hash

value to a shorter one, assuming that the trun-

cated hash will inherit the long one’s security.

Saarinen’s result means that they can’t count

on that with VSH.

In the final analysis, what makes it so

hard to come up with good hash func-

tions—and prove they work—is that they

are expected to do so many things. “You

expect them to do everything and blame

them when they don’t work,” says Preneel.

Perhaps a 4-year bake-off will be just what

the chef ordered to make some new hash

that will satisfy everybody’s tastes.

–DANA MACKENZIE

Dana Mackenzie is a freelance writer in Santa Cruz,
California.

www.sciencemag.org SCIENCE VOL 319 14 MARCH 2008 1481

C
R

E
D

IT
:

M
IC

R
O

S
O

F
T

 R
E

S
E

A
R

C
H

NEWSFOCUS

Hash of the Future?

Have you ever struggled to solve a maze? Then imagine trying to find a
path through a tangled, three-dimensional maze as large as the Milky
Way. By incorporating such a maze into a hash function, Kristin
Lauter of Microsoft Research in Redmond, Washington, is betting
that neither you nor anyone else will solve that problem.

Technically, Lauter’s maze is called an “expander
graph” (see figure, right). Nodes in the graph corre-
spond to elliptic curves, or equations of the form y2 =
x3 + ax + b. Each curve leads to three other curves by
a mathematical relation, now called isogeny, that
Pierre de Fermat discovered while trying to prove
his famous Last Theorem.

To hash a digital file using an expander
graph, you would convert the bits of data
into directions: 0 would mean “turn right,”
1 would mean “turn left.” In the maze
illustrated here, after the initial step 1-2,
the blue path encodes the directions 1, 0, 1, 1, 0,
0, 0, 0, 1, ending at point 24, which would be the
digital signature of the string 101100001. The red
loop shows a collision of two paths, which would be
practically impossible to find in the immense maze
envisioned by Lauter.

Although her hash function (developed with colleagues
Denis Charles and Eyal Goren) is provably secure, Lauter admits
that it is not yet fast enough to compete with iterative hash func-
tions. However, for applications in which speed is less of an issue—
for example, where the files to be hashed are relatively small—Lauter
believes it might be a winner. –D.M.

Published by AAAS

 o
n

M
ar

ch
 1

3,
 2

00
8

w
w

w
.s

ci
en

ce
m

ag
.o

rg
D

ow
nl

oa
de

d
fr

om

Christophe Petit - Aussois - March 2018 7

Charles-Goren-Lauter hash function (2)

I Suggested parameters :
I Supersingular curves (for optimal expansion properties)
I ` isogeny-graph with ` = 2 (for efficiency)
I “Special” starting curve E0 (typically j = 1728)

with known endomorphism ring
(no convenient way to select a “random” starting curve)

I Collision, preimage, second preimage resistance naturally
translate into isogeny problems, where isogeny degrees
are required to be `e for some e

I Preimage ≈ isogeny ≈ path between two vertices
I Collision ≈ endomorphism ≈ cycle in the graph

Christophe Petit - Aussois - March 2018 8

The endomorphism ring of a supersingular curve

I The endomorphism ring of a supersingular curve is a
maximal order in the quaternion algebra Bp,∞

I In fact, Deuring correspondence [D31] : bijection from
supersingular curves over Fp2 (up to Galois conjugacy)
to maximal orders in Bp,∞ (up to conjugation)

E → O ≈ End(E)

I Under this correspondence, an isogeny φ : E0 → E1

corresponds to a left ideal of O0 ≈ End(E0) which is also
a right ideal of O1 ≈ End(E1)

Christophe Petit - Aussois - March 2018 9

Strategy to break CGL hash function [PL17]

I Idea : given two curves E0 and E1

1. Compute End(E0) and End(E1)
2. Translate collision and preimage resistance properties

from the elliptic curve setting to the quaternion setting
3. Break collision and preimage resistance for quaternions
4. Translate the attacks back to elliptic curve setting

I Results so far (1)
I Breaking CGL hash function (for randomly chosen E0)

is equivalent to computing endomorphism rings

Christophe Petit - Aussois - March 2018 10

Core problem : computing endomorphisms

I Kohel’s algorithm [K96] : fix a small `. Given a curve E ,
compute all its neighbors in isogeny graph. Compute all
neighbors of neighbors, etc, until a loop is found,
corresponding to an endomorphism

I Complexity Õ(
√
p)

Christophe Petit - Aussois - March 2018 11

Some variants

I To compute an isogeny between two curves, grow two
trees until a collision is found

I Delfs-Galbraith [DG16] : first compute isogenies to two
Fp curves, then connect those two curves

I Time-memory trade-offs (van Oorschot-Wiener) [vOW94]

I Quantum speedups (?) : cube root quantum claw finding,
but may not be practical [JS19]

Christophe Petit - Aussois - March 2018 12

Strategy to break CGL hash function [PL17]

I Idea : given two curves E0 and E1

1. Compute End(E0) and End(E1)
2. Translate collision and preimage resistance properties

from the elliptic curve setting to the quaternion setting
3. Break collision and preimage resistance for quaternions
4. Translate the attacks back to elliptic curve setting

I Results so far (1)
I Breaking CGL hash function (for randomly chosen E0)

is equivalent to computing endomorphism rings

Christophe Petit - Aussois - March 2018 13

Strategy to break CGL hash function [PL17]

I Idea : given two curves E0 and E1

1. Compute End(E0) and End(E1)
2. Translate collision and preimage resistance properties

from the elliptic curve setting to the quaternion setting
3. Break collision and preimage resistance for quaternions
4. Translate the attacks back to elliptic curve setting

I Results so far (2)
I 2-4 can be solved in polynomial time (modulo heuristics)
I When a “special” E0 is chosen in CGL hash function,

we can compute collisions in polynomial time
I Explicit Deuring correspondence easy in one direction

(given O compute corresponding j)

Christophe Petit - Aussois - March 2018 14

Key tools

I Algorithms to solve quaternion norm equations [KLPT14]

I Translation between quaternion ideals and isogenies [W69]

I Let E0 with known End(E0) ≈ O0 ⊂ Bp,∞
I Isogenies from E0 correspond to left ideals of O0

I Correspondence computed by identifying kernels
I Efficient for powersmooth norms/degrees

I “Quaternion `-isogeny algorithm” [KLPT14,GPS17]

I Replace ideal by equivalent one with powersmooth norm

Christophe Petit - Aussois - March 2018 15

Partial attack on CGL hash function [PL17]

I Suppose CGL hash function uses a special curve E0

I Goal : compute an endomorphism of E0 of degree `e

(this gives a collision with the void message)

I Compute α ∈ O0 ≈ End(E0) of norm `e (as in [KLPT14])

I Deduce a collision path in the quaternion setting
Ii = O0`

i + O0α, i = 1, . . . , e, where n(Ii) = `i

I For each i
I Compute Ji ≈ Ii with powersmooth norm
I Compute corresponding isogeny ϕi : E0 → Ei

I Deduce a collision path (E0,E1, . . . ,Ee = E0)

Christophe Petit - Aussois - March 2018 16

Strategy to break CGL hash function [PL17]

I Idea : given two curves E0 and E1

1. Compute End(E0) and End(E1)
2. Translate collision and preimage resistance properties

from the elliptic curve setting to the quaternion setting
3. Break collision and preimage resistance for quaternions
4. Translate the attacks back to elliptic curve setting

I Results so far
I Breaking CGL hash function for randomly chosen E0

is equivalent to computing endomorphism rings
I When a “special” E0 is chosen in CGL hash function,

we can compute collisions in polynomial time

Christophe Petit - Aussois - March 2018 17

Outline

Computing isogenies (generic supersingular case)

Supersingular isogeny key exchange protocol

Computing isogenies (ordinary curves and CSIDH)

Christophe Petit - Aussois - March 2018 18

Diffie-Hellman key agreement

I Choose g generating a cyclic group

I Alice picks a random a and sends g a

I Bob picks a random b and sends gb

I Alice computes (gb)a = g ab

I Bob computes (g a)b = g ab

I Eve cannot compute a, b or g ab from g a and gb

(discrete logarithm, Diffie-Hellman problems)

Christophe Petit - Aussois - March 2018 19

Isogeny-based Diffie-Hellman [JdF11]

I Choose a prime p, and NA,NB ∈ N with gcd(NA,NB) = 1
Choose E0 a supersingular curve over Fp2

I Alice picks a cyclic subgroup GA ⊂ E0[NA] defining an
isogeny φA : E0 → EA = E0/GA and she sends EA to Bob

I Bob picks a cyclic subgroup GB ⊂ E0[NB] defining an
isogeny φB : E0 → EB = E0/GB and he sends EB to Alice

E0

EA = E0/GA

EB = E0/GB

E0/〈GA,GB〉
φA

φB

φ′B

φ′A

I Shared key is E0/〈GA,GB〉 = EB/φB(GA) = EA/φA(GB)

Christophe Petit - Aussois - March 2018 20

Isogeny-based Diffie-Hellman (2)

I To compute the shared key Alice will need φB(GA).
This is achieved as follows :

I Let GA = 〈αAPA + βAQA〉 where 〈PA,QA〉 = E0[NA]
and at least one of αA, βA coprime to NA

I Bob reveals φB(PA) and φB(QA) in addition to EB

I Alice computes φB(GA) = 〈αAφB(PA) + βAφB(QA)〉

I Can represent φA efficiently if NA smooth
I Can represent torsion points efficiently if either

I NA | p − 1
I NA =

∏
`eii with `eii small

Christophe Petit - Aussois - March 2018 21

Supersingular key agreement protocol [JdF11]

E0
PA,QA, RA

PB ,QB , RB

E0/〈RA〉
φA(PB), φA(QB)

φA(RB)

E0/〈RB〉
φB(PA), φB(QA)

φB(RA)

E0/〈RA,RB〉

φA

φB

φ′B

φ′A

I Jao-De Feo chose Ni = `eii and p = NANB f + 1
I A priori safer to use arbitrary primes and Ni ≈ p2

Christophe Petit - Aussois - March 2018 22

Special isogeny problems

I In Jao-De Feo-Plût protocols special problems are used

1. A special prime p is chosen so that p = N1N2 ± 1
with N1 ≈ N2 ≈

√
p

2. There are ≈ p/12 supersingular invariants but only
N1 ≈

√
p possible choices for E1

3. Extra information provided : compute φ : E0 → E1

of degree N1 knowing φ(P) for all P ∈ E0[N2]

I Point 2 improves tree-based attacks to O(p1/4)
(and similar improvements using van Oorschot-Wiener)

I We now focus on Point 3

Christophe Petit - Aussois - March 2018 23

Impact of torsion points

I Attack on Jao-De Feo-Plût protocol : compute an isogeny
φ1 : E0 → E1 of degree N1 given action of φ1 on E0[N2]

I How useful is this additional information ?
I If d = gcd(N1,N2) 6= 1 we can recover (part of) φ1

I Write φ1 = φ′1 ◦ φd with deg φd = d
I Solve DLP modulo d to recover ker φd hence φd
I Find φ′1 with a meet-in-the-middle approach

I In SIDH we have gcd(N1,N2) = 1 by design

I Useless ?

Christophe Petit - Aussois - March 2018 24

Outline

Computing isogenies (generic supersingular case)

Supersingular isogeny key exchange protocol
Using torsion points : active attacks
Using torsion points : passive attacks

Computing isogenies (ordinary curves and CSIDH)

Christophe Petit - Aussois - March 2018 25

Active attacks on static keys (1)

I Attack idea : trick Alice into computing φA(PB), φA(QB)
for PB ,QB of order NA instead of NB

I PB ,QB part of a (maliciously generated) public key
I Fault attack during Alice’s computation [T17,GW17]

I More generally, PB ,QB of order not coprime with NB

I Countermeasure : check that PB ,QB have order NB

Christophe Petit - Aussois - March 2018 26

Active attacks on static keys (2) [GPST16]

I Attack model
I Alice is using a static key α defining a cyclic subgroup

GA = 〈PA + αQA〉 ⊂ E0[NA]
I Instead of sending φB(PA), φB(QA) as expected,

Bob adaptively chooses and sends Pi ,Qi

I Bob learns whether this modifies the shared key

j(EB/〈Pi + αQi 〉)
?
= j(EB/〈φB(PA) + αφB(QA)〉)

I Bob progressively recovers α with several Pi ,Qi

I Additional constraint : make sure Pi ,Qi look as expected

I NBPi = NBQi = O
I eNB

(Pi ,Qi) = eNB
(φA(PB), φA(QB)) = eNB

(PB ,QB)NA

Christophe Petit - Aussois - March 2018 27

Solution and countermeasure

I Solution for NA = 2e :
I Let α = Ai + 2iα′

I Replace φA(PB), φA(QB) by Pi ,Qi such that(
Pi
Qi

)
=

1

λi

(
1 −2n−i−1Ai

0 1+2n−i−1

)(
φA(PB)
φA(QB)

)
where λ2i = 1 + 2n−i−1 mod 2n

I We then have 〈Pi + αQi 〉 = 〈φA(PB) + αφA(QB)〉 iff
2n−i−1(−Ai + α) mod 2n

I Countermeasure : Fujisaki-Okamoto transform
(factor 2 slowdown)

Christophe Petit - Aussois - March 2018 28

Outline

Computing isogenies (generic supersingular case)

Supersingular isogeny key exchange protocol
Using torsion points : active attacks
Using torsion points : passive attacks

Computing isogenies (ordinary curves and CSIDH)

Christophe Petit - Aussois - March 2018 29

Impact of torsion points

I Attack on Jao-De Feo-Plût protocol : compute an isogeny
φ1 : E0 → E1 of degree N1 given action of φ1 on E0[N2]

I How useful is this additional information ?
I If d = gcd(N1,N2) 6= 1 we can recover (part of) φ1,

but in SIDH we have gcd(N1,N2) 6= 1 by design
I Some active attacks can exploit torsion points

I What about passive attacks ? (honest users)

Christophe Petit - Aussois - March 2018 30

Warm-up : computing endomorphisms

with auxilliary information

I Let p be a prime and let E be a supersingular elliptic
curve defined over Fp2 . Let φ be a non scalar
endomorphism of E with smooth order N1. Let N2 be a
smooth integer with gcd(N1,N2) = 1, and let P ,Q be a
basis of E [N2].

I Let R be a subring of End(E) that is either easy to
compute, or given (for example, scalar multiplications).

I Given E , P , Q, φ(P), φ(Q), deg φ, R , compute φ.

I Best previous algorithm : meet-in-the-middle in Õ(
√
N1)

Christophe Petit - Aussois - March 2018 31

Algorithm sketch (with R = Z)

I We know φ on the N2 torsion.
Deduce φ̂ on the N2 torsion and Tr(φ) if N2 > 2

√
N1.

I Consider ψ := aφ + b for a, b ∈ Z.
Can evaluate ψ on the N2 torsion.

I Find a, b ∈ Z such that

degψ = a2 deg φ + b2 + abTrφ = N2N
′
1

with N ′1 small and smooth. Write ψ = ψN′1
ψN2 .

I Identify kerψN2 from ψ(E [N2]) and deduce ψN2 .
I Find ψN′1

with a meet-in-the-middle strategy.
I Find ker φ by evaluating (ψ − b)/a on the N1 torsion,

and deduce φ.

Christophe Petit - Aussois - March 2018 32

Finding (a, b) and Complexity

I We have degψ = a2 deg φ + b2 + abTrφ

=
(
b + aTrφ

2

)2
+ a2

(
deg φ−

(
Trφ
2

)2)
I We want degψ = N2N

′
1 and N ′1 small and smooth

I Solutions to degψ = 0 mod N2 form a dimension 2 lattice

I We compute a reduced basis, then search for a small
linear combination of short vectors until N ′1 smooth

I Heuristic analysis shows we can expect N ′1 ≈
√
N1.

Revealing φ(E [N2]) leads to a near square root speedup.
(Some parameter restrictions apply.)

Christophe Petit - Aussois - March 2018 33

Computing isogenies with auxilliary information

I Let p be a prime. Let N1,N2 ∈ Z coprime. Let E0 be a
supersingular elliptic curve over Fp2 . Let φ1 : E0 → E1 be
an isogeny of degree N1.

I Let R0,R1 be subrings of End(E0), End(E1) respectively.
Assume R0 contains more than scalar multiplications.

I Given N1, E1, R0, R1 and the image of φ1 on the whole
N2 torsion, compute φ1.

I Best previous algorithm : meet-in-the-middle in Õ(
√
N1)

Christophe Petit - Aussois - March 2018 34

General idea

I For θ ∈ End(E0) consider φ = φ1θφ̂1 ∈ End(E1)

I Evaluate φ on the N2 torsion

I Apply techniques from above on φ

I Compute ker φ ∩ E1[N1]

I Deduce ker φ̂1, then φ̂1 and φ1

Christophe Petit - Aussois - March 2018 35

Remarks

I Several authors have suggested to use j(E0) = 1728 for
efficiency reasons. In this case End(E0) is entirely known
and moreover it contains a degree 1 non scalar element θ.
Both aspects are useful in attacks.

I The paper develops two attacks but we expect variants
and improvements to come.

Christophe Petit - Aussois - March 2018 36

Impact on Key Agreement Protocol

I For j(E0) = 1728 and when N1 ≈ p and N2 ≈ N4
1

this approach leads to polynomial time key recovery
(heuristic analysis)

I Assuming only that End(E0) has a small element, then if
logN2 ≈ (log2 N1), a variant of the above strategy also
leads to polynomial time key recovery (heuristic analysis)

I Parameters suggested by De Feo-Jao-Plût N1 ≈ N2 ≈
√
p

are not affected so far

Christophe Petit - Aussois - March 2018 37

Outline

Computing isogenies (generic supersingular case)

Supersingular isogeny key exchange protocol

Computing isogenies (ordinary curves and CSIDH)

Christophe Petit - Aussois - March 2018 38

Endomorphism ring computation

I Ordinary case : subexponential time (Bisson-Sutherland)

I CSIDH [CLMPR18] : we have

Z[π] ⊆ End(E) ⊆ Z
[
π + 1

2

]
where π : (x , y)→ (xp, yp)

and we can easily verify whether π+1
2
∈ End(E)

Christophe Petit - Aussois - March 2018 39

Computing isogenies : classical algorithms

I We expect O(p1/2) supersingular curves over Fp

I Meet-in-the-middle approach restricted to these curves
has cost O(p1/4)

Christophe Petit - Aussois - March 2018 40

Computing isogenies : quantum algorithms

I Reduction to hidden shift problem : let E0,E1 two
isogenous curves. For s ∈ C`(End(E0)) such that
E1 = s ∗ E0 we have

f (x) = g(xs)

where f (x) = x ∗ E1 and g(x) = x ∗ E0

I Kuperberg’s quantum algorithm (or variants) solves this
in subexponential time

Christophe Petit - Aussois - March 2018 41

SIDH vs CSIDH ?

I CSIDH
I No torsion points revealed
I Subexponential quantum attacks
I Still exponential classical attacks

I SIDH
I Torsion points revealed

(leading to attacks on overstreched parameters)
I Still exponential classical and quantum attacks

Christophe Petit - Aussois - March 2018 42

Outline

Computing isogenies (generic supersingular case)

Supersingular isogeny key exchange protocol

Computing isogenies (ordinary curves and CSIDH)

Christophe Petit - Aussois - March 2018 43

Conclusion

I Endomorphism ring computation & pure isogeny problems
are natural problems with some history

I Still, we need more classical and quantum cryptanalysis,
especially on problem variants

I SIDH or CSIDH ? depends on two hypothetical threats
I Improved torsion point attacks

(or more attacks using further specificities in SIDH)
I Devastating subexponential quantum attacks

Christophe Petit - Aussois - March 2018 44

Thanks !

I Questions ?

Christophe Petit - Aussois - March 2018 45

Bibiography

I [CGL08] Charles-Goren-Lauter. Cryptographic hash
functions from expander graphs.

I [D31] Deuring. Die Typen der Multiplikatorenringe
elliptischer Funktionenkörper.

I [PL17] Petit-Lauter. Hard and easy problems in
supersingular isogeny graphs.

I [W69] Waterhouse. Abelian varieties over finite fields.
I [KLPT14] Kohel-Lauter-Petit-Tignol. On the quaternion
`-isogeny path problem.

I [GPS17] Galbraith-Petit-Silva. Identification Protocols and
Signature Schemes Based on Supersingular Isogeny
Problems.

I [K96] Kohel. Endomorphism rings of elliptic curves over
finite fields.

Christophe Petit - Aussois - March 2018 46

Bibiography

I [DG16] Delfs-Galbraith. Computing isogenies between
supersingular elliptic curves over Fp.

I [vOW94] van Oorschot-Wiener. Parallel collision search
with application to hash functions and discrete logarithms.

I [JS19] Jaques-Schanck. Quantum cryptanalysis in the
RAM model : Claw finding attacks on SIKE.

I [JdF11] Jao-de Feo. Towards Quantum-Resistant
Cryptosystems from Supersingular Elliptic Curve
Isogenies.

I [T17] Ti. Fault attack on supersingular isogeny
cryptosystems.

I [GW17] Gelin-Welosowski. Loop-abort faults on
supersingular isogeny cryptosystems.

Christophe Petit - Aussois - March 2018 47

Bibiography

I [GPST16] Galbraith-Petit-Shani-Ti. On the Security of
Supersingular Isogeny Cryptosystems.

I [P17] Petit. Faster Algorithms for Isogeny Problems Using
Torsion Point Images.

I [BS11] Bisson-Sutherland. Computing the endomorphism
ring of an ordinary elliptic curve over a finite field.

I [CLMPR18] Castryck-Lange-Martindale-Panny-Rennes
CSIDH : An Efficient Post-Quantum Commutative Group
Action

I [K05] Kuperberg. A Subexponential-Time Quantum
Algorithm for the Dihedral Hidden Subgroup Problem.

	Computing isogenies (generic supersingular case)
	Supersingular isogeny key exchange protocol
	Using torsion points: active attacks
	Using torsion points: passive attacks

	Computing isogenies (ordinary curves and CSIDH)

