Isogeny-based cryptography: cryptanalysis results

Christophe Petit
University of Birmingham

Isogeny-based cryptography

- Recently proposed for post-quantum cryptography
- Natural problems from a number theory point of view
- Some history, e.g. David Kohel's PhD thesis in 1996
- Some still exponential time, even for quantum computers

Hard problems?

- Isogeny computation problem (CGL hash, CSIDH) : Given two randomly chosen isogenous elliptic curves, compute an isogeny between them.
- Supersingular Isogeny Diffie-Hellman protocol : Let p a prime such that $2^{e} 3^{f} \mid(p-1)$ and $2^{e} \approx 3^{f} \approx \sqrt{p}$. Given two supersingular elliptic curves E_{0}, E_{1} over $\mathbb{F}_{p^{2}}$ connected by an isogeny $\varphi: E_{0} \rightarrow E_{1}$ of degree 2^{e}, and given the action of φ on the 3^{f}-torsion, compute φ.

Outline

Computing isogenies (generic supersingular case)
Supersingular isogeny key exchange protocol

Computing isogenies (ordinary curves and CSIDH)

Outline

Computing isogenies (generic supersingular case)

Supersingular isogeny key exchange protocol

Computing isogenies (ordinary curves and CSIDH)

Charles-Goren-Lauter hash function [CGL08]

Charles-Goren-Lauter hash function (2)

- Suggested parameters :
- Supersingular curves (for optimal expansion properties)
- ℓ isogeny-graph with $\ell=2$ (for efficiency)
- "Special" starting curve E_{0} (typically $j=1728$) with known endomorphism ring (no convenient way to select a "random" starting curve)
- Collision, preimage, second preimage resistance naturally translate into isogeny problems, where isogeny degrees are required to be ℓ^{e} for some e
- Preimage \approx isogeny \approx path between two vertices
- Collision \approx endomorphism \approx cycle in the graph

The endomorphism ring of a supersingular curve

- The endomorphism ring of a supersingular curve is a maximal order in the quaternion algebra $B_{p, \infty}$
- In fact, Deuring correspondence [D31] : bijection from supersingular curves over $\mathbb{F}_{p^{2}}$ (up to Galois conjugacy) to maximal orders in $B_{p, \infty}$ (up to conjugation)

$$
E \rightarrow O \approx \operatorname{End}(E)
$$

- Under this correspondence, an isogeny $\phi: E_{0} \rightarrow E_{1}$ corresponds to a left ideal of $O_{0} \approx \operatorname{End}\left(E_{0}\right)$ which is also a right ideal of $O_{1} \approx \operatorname{End}\left(E_{1}\right)$

Strategy to break CGL hash function [PL17]

- Idea : given two curves E_{0} and E_{1}

1. Compute $\operatorname{End}\left(E_{0}\right)$ and $\operatorname{End}\left(E_{1}\right)$
2. Translate collision and preimage resistance properties from the elliptic curve setting to the quaternion setting
3. Break collision and preimage resistance for quaternions
4. Translate the attacks back to elliptic curve setting

- Results so far (1)
- Breaking CGL hash function (for randomly chosen E_{0}) is equivalent to computing endomorphism rings

Core problem : computing endomorphisms

- Kohel's algorithm [K96] : fix a small ℓ. Given a curve E, compute all its neighbors in isogeny graph. Compute all neighbors of neighbors, etc, until a loop is found, corresponding to an endomorphism

- Complexity $\tilde{O}(\sqrt{p})$

Some variants

- To compute an isogeny between two curves, grow two trees until a collision is found
- Delfs-Galbraith [DG16] : first compute isogenies to two \mathbb{F}_{p} curves, then connect those two curves
- Time-memory trade-offs (van Oorschot-Wiener) [vOW94]
- Quantum speedups (?) : cube root quantum claw finding, but may not be practical [JS19]

Strategy to break CGL hash function [PL17]

- Idea : given two curves E_{0} and E_{1}

1. Compute $\operatorname{End}\left(E_{0}\right)$ and $\operatorname{End}\left(E_{1}\right)$
2. Translate collision and preimage resistance properties from the elliptic curve setting to the quaternion setting
3. Break collision and preimage resistance for quaternions
4. Translate the attacks back to elliptic curve setting

- Results so far (1)
- Breaking CGL hash function (for randomly chosen E_{0}) is equivalent to computing endomorphism rings

Strategy to break CGL hash function [PL17]

- Idea : given two curves E_{0} and E_{1}

1. Compute $\operatorname{End}\left(E_{0}\right)$ and $\operatorname{End}\left(E_{1}\right)$
2. Translate collision and preimage resistance properties from the elliptic curve setting to the quaternion setting
3. Break collision and preimage resistance for quaternions
4. Translate the attacks back to elliptic curve setting

- Results so far (2)
- 2-4 can be solved in polynomial time (modulo heuristics)
- When a "special" E_{0} is chosen in CGL hash function, we can compute collisions in polynomial time
- Explicit Deuring correspondence easy in one direction (given O compute corresponding j)

Key tools

- Algorithms to solve quaternion norm equations [KLPT14]
- Translation between quaternion ideals and isogenies [W69]
- Let E_{0} with known $\operatorname{End}\left(E_{0}\right) \approx O_{0} \subset B_{p, \infty}$
- Isogenies from E_{0} correspond to left ideals of O_{0}
- Correspondence computed by identifying kernels
- Efficient for powersmooth norms/degrees
- "Quaternion ℓ-isogeny algorithm" [KLPT14,GPS17]
- Replace ideal by equivalent one with powersmooth norm

Partial attack on CGL hash function [PL17]

- Suppose CGL hash function uses a special curve E_{0}
- Goal : compute an endomorphism of E_{0} of degree ℓ^{e} (this gives a collision with the void message)
- Compute $\alpha \in O_{0} \approx \operatorname{End}\left(E_{0}\right)$ of norm ℓ^{e} (as in [KLPT14])
- Deduce a collision path in the quaternion setting $I_{i}=O_{0} \ell^{i}+O_{0} \alpha, i=1, \ldots, e, \quad$ where $n\left(I_{i}\right)=\ell^{i}$
- For each i
- Compute $J_{i} \approx I_{i}$ with powersmooth norm
- Compute corresponding isogeny $\varphi_{i}: E_{0} \rightarrow E_{i}$
- Deduce a collision path ($E_{0}, E_{1}, \ldots, E_{e}=E_{0}$)

Strategy to break CGL hash function [PL17]

- Idea : given two curves E_{0} and E_{1}

1. Compute $\operatorname{End}\left(E_{0}\right)$ and $\operatorname{End}\left(E_{1}\right)$
2. Translate collision and preimage resistance properties from the elliptic curve setting to the quaternion setting
3. Break collision and preimage resistance for quaternions
4. Translate the attacks back to elliptic curve setting

- Results so far
- Breaking CGL hash function for randomly chosen E_{0} is equivalent to computing endomorphism rings
- When a "special" E_{0} is chosen in CGL hash function, we can compute collisions in polynomial time

Outline

Computing isogenies (generic supersingular case)
Supersingular isogeny key exchange protocol

Computing isogenies (ordinary curves and CSIDH)

Diffie-Hellman key agreement

- Choose g generating a cyclic group
- Alice picks a random a and sends g^{a}
- Bob picks a random b and sends g^{b}
- Alice computes $\left(g^{b}\right)^{a}=g^{a b}$
- Bob computes $\left(g^{a}\right)^{b}=g^{a b}$
- Eve cannot compute a, b or $g^{a b}$ from g^{a} and g^{b} (discrete logarithm, Diffie-Hellman problems)

Isogeny-based Diffie-Hellman [JdF11]

- Choose a prime p, and $N_{A}, N_{B} \in \mathbb{N}$ with $\operatorname{gcd}\left(N_{A}, N_{B}\right)=1$ Choose E_{0} a supersingular curve over $\mathbb{F}_{p^{2}}$
- Alice picks a cyclic subgroup $G_{A} \subset E_{0}\left[N_{A}\right]$ defining an isogeny $\phi_{A}: E_{0} \rightarrow E_{A}=E_{0} / G_{A}$ and she sends E_{A} to Bob
- Bob picks a cyclic subgroup $G_{B} \subset E_{0}\left[N_{B}\right]$ defining an isogeny $\phi_{B}: E_{0} \rightarrow E_{B}=E_{0} / G_{B}$ and he sends E_{B} to Alice

- Shared key is $E_{0} /\left\langle G_{A}, G_{B}\right\rangle=E_{B} / \phi_{B}\left(G_{A}\right)=E_{A} / \phi_{A}\left(G_{B}\right)$

Isogeny-based Diffie-Hellman (2)

- To compute the shared key Alice will need $\phi_{B}\left(G_{A}\right)$. This is achieved as follows :
- Let $G_{A}=\left\langle\alpha_{A} P_{A}+\beta_{A} Q_{A}\right\rangle$ where $\left\langle P_{A}, Q_{A}\right\rangle=E_{0}\left[N_{A}\right]$ and at least one of α_{A}, β_{A} coprime to N_{A}
- Bob reveals $\phi_{B}\left(P_{A}\right)$ and $\phi_{B}\left(Q_{A}\right)$ in addition to E_{B}
- Alice computes $\phi_{B}\left(G_{A}\right)=\left\langle\alpha_{A} \phi_{B}\left(P_{A}\right)+\beta_{A} \phi_{B}\left(Q_{A}\right)\right\rangle$
- Can represent ϕ_{A} efficiently if N_{A} smooth
- Can represent torsion points efficiently if either
- $N_{A} \mid p-1$
- $N_{A}=\prod \ell_{i}^{e_{i}}$ with $\ell_{i}^{e_{i}}$ small

Supersingular key agreement protocol [JdF11]

$$
P_{A}, Q_{A}, R_{A}
$$

- Jao-De Feo chose $N_{i}=\ell_{i}^{e_{i}}$ and $p=N_{A} N_{B} f+1$
- A priori safer to use arbitrary primes and $N_{i} \approx p^{2}$

Special isogeny problems

- In Jao-De Feo-Plût protocols special problems are used

1. A special prime p is chosen so that $p=N_{1} N_{2} \pm 1$ with $N_{1} \approx N_{2} \approx \sqrt{p}$
2. There are $\approx p / 12$ supersingular invariants but only $N_{1} \approx \sqrt{p}$ possible choices for E_{1}
3. Extra information provided : compute $\phi: E_{0} \rightarrow E_{1}$ of degree N_{1} knowing $\phi(P)$ for all $P \in E_{0}\left[N_{2}\right]$

- Point 2 improves tree-based attacks to $O\left(p^{1 / 4}\right)$ (and similar improvements using van Oorschot-Wiener)
- We now focus on Point 3

Impact of torsion points

- Attack on Jao-De Feo-Plût protocol : compute an isogeny $\phi_{1}: E_{0} \rightarrow E_{1}$ of degree N_{1} given action of ϕ_{1} on $E_{0}\left[N_{2}\right]$
- How useful is this additional information?
- If $d=\operatorname{gcd}\left(N_{1}, N_{2}\right) \neq 1$ we can recover (part of) ϕ_{1}
- Write $\phi_{1}=\phi_{1}^{\prime} \circ \phi_{d}$ with $\operatorname{deg} \phi_{d}=d$
- Solve DLP modulo d to recover ker ϕ_{d} hence ϕ_{d}
- Find ϕ_{1}^{\prime} with a meet-in-the-middle approach
- In SIDH we have $\operatorname{gcd}\left(N_{1}, N_{2}\right)=1$ by design
- Useless?

Outline

Computing isogenies (generic supersingular case)

Supersingular isogeny key exchange protocol
Using torsion points : active attacks
Using torsion points : passive attacks

Computing isogenies (ordinary curves and CSIDH)

Active attacks on static keys (1)

- Attack idea : trick Alice into computing $\phi_{A}\left(P_{B}\right), \phi_{A}\left(Q_{B}\right)$ for P_{B}, Q_{B} of order N_{A} instead of N_{B}
- P_{B}, Q_{B} part of a (maliciously generated) public key
- Fault attack during Alice's computation [T17,GW17]
- More generally, P_{B}, Q_{B} of order not coprime with N_{B}
- Countermeasure : check that P_{B}, Q_{B} have order N_{B}

Active attacks on static keys (2) [GPST16]

- Attack model
- Alice is using a static key α defining a cyclic subgroup $G_{A}=\left\langle P_{A}+\alpha Q_{A}\right\rangle \subset E_{0}\left[N_{A}\right]$
- Instead of sending $\phi_{B}\left(P_{A}\right), \phi_{B}\left(Q_{A}\right)$ as expected, Bob adaptively chooses and sends P_{i}, Q_{i}
- Bob learns whether this modifies the shared key $j\left(E_{B} /\left\langle P_{i}+\alpha Q_{i}\right\rangle\right) \stackrel{?}{=} j\left(E_{B} /\left\langle\phi_{B}\left(P_{A}\right)+\alpha \phi_{B}\left(Q_{A}\right)\right\rangle\right)$
- Bob progressively recovers α with several P_{i}, Q_{i}
- Additional constraint : make sure P_{i}, Q_{i} look as expected
- $N_{B} P_{i}=N_{B} Q_{i}=O$
- $e_{N_{B}}\left(P_{i}, Q_{i}\right)=e_{N_{B}}\left(\phi_{A}\left(P_{B}\right), \phi_{A}\left(Q_{B}\right)\right)=e_{N_{B}}\left(P_{B}, Q_{B}\right)^{N_{A}}$

Solution and countermeasure

- Solution for $N_{A}=2^{e}$:
- Let $\alpha=A_{i}+2^{i} \alpha^{\prime}$
- Replace $\phi_{A}\left(P_{B}\right), \phi_{A}\left(Q_{B}\right)$ by P_{i}, Q_{i} such that

$$
\binom{P_{i}}{Q_{i}}=\frac{1}{\lambda_{i}}\left(\begin{array}{cc}
1 & -2^{n-i-1} A_{i} \\
0 & 1+2^{n-i-1}
\end{array}\right)\binom{\phi_{A}\left(P_{B}\right)}{\phi_{A}\left(Q_{B}\right)}
$$

where $\lambda_{i}^{2}=1+2^{n-i-1} \bmod 2^{n}$

- We then have $\left\langle P_{i}+\alpha Q_{i}\right\rangle=\left\langle\phi_{A}\left(P_{B}\right)+\alpha \phi_{A}\left(Q_{B}\right)\right\rangle$ iff $2^{n-i-1}\left(-A_{i}+\alpha\right) \bmod 2^{n}$
- Countermeasure : Fujisaki-Okamoto transform (factor 2 slowdown)

Outline

Computing isogenies (generic supersingular case)

Supersingular isogeny key exchange protocol
Using torsion points : active attacks
Using torsion points : passive attacks

Computing isogenies (ordinary curves and CSIDH)

Impact of torsion points

- Attack on Jao-De Feo-Plût protocol : compute an isogeny $\phi_{1}: E_{0} \rightarrow E_{1}$ of degree N_{1} given action of ϕ_{1} on $E_{0}\left[N_{2}\right]$
- How useful is this additional information?
- If $d=\operatorname{gcd}\left(N_{1}, N_{2}\right) \neq 1$ we can recover (part of) ϕ_{1}, but in SIDH we have $\operatorname{gcd}\left(N_{1}, N_{2}\right) \neq 1$ by design
- Some active attacks can exploit torsion points
- What about passive attacks? (honest users)

Warm-up : computing endomorphisms with auxilliary information

- Let p be a prime and let E be a supersingular elliptic curve defined over $\mathbb{F}_{p^{2}}$. Let ϕ be a non scalar endomorphism of E with smooth order N_{1}. Let N_{2} be a smooth integer with $\operatorname{gcd}\left(N_{1}, N_{2}\right)=1$, and let P, Q be a basis of $E\left[N_{2}\right]$.
- Let R be a subring of $\operatorname{End}(E)$ that is either easy to compute, or given (for example, scalar multiplications).
- Given $E, P, Q, \phi(P), \phi(Q), \operatorname{deg} \phi, R$, compute ϕ.
- Best previous algorithm : meet-in-the-middle in $\tilde{O}\left(\sqrt{N_{1}}\right)$

Algorithm sketch (with $R=\mathbb{Z}$)

- We know ϕ on the N_{2} torsion.

Deduce $\hat{\phi}$ on the N_{2} torsion and $\operatorname{Tr}(\phi)$ if $N_{2}>2 \sqrt{N_{1}}$.

- Consider $\psi:=a \phi+b$ for $a, b \in \mathbb{Z}$.

Can evaluate ψ on the N_{2} torsion.

- Find $a, b \in \mathbb{Z}$ such that

$$
\operatorname{deg} \psi=a^{2} \operatorname{deg} \phi+b^{2}+a b \operatorname{Tr} \phi=N_{2} N_{1}^{\prime}
$$

with N_{1}^{\prime} small and smooth. Write $\psi=\psi_{N_{1}^{\prime}} \psi_{N_{2}}$.

- Identify ker $\psi_{N_{2}}$ from $\psi\left(E\left[N_{2}\right]\right)$ and deduce $\psi_{N_{2}}$.
- Find $\psi_{N_{1}^{\prime}}$ with a meet-in-the-middle strategy.
- Find ker ϕ by evaluating $(\psi-b) / a$ on the N_{1} torsion, and deduce ϕ.

Finding (a, b) and Complexity

- We have $\operatorname{deg} \psi=a^{2} \operatorname{deg} \phi+b^{2}+a b \operatorname{Tr} \phi$

$$
=\left(b+a \frac{\operatorname{Tr} \phi}{2}\right)^{2}+a^{2}\left(\operatorname{deg} \phi-\left(\frac{\operatorname{Tr} \phi}{2}\right)^{2}\right)
$$

- We want $\operatorname{deg} \psi=N_{2} N_{1}^{\prime}$ and N_{1}^{\prime} small and smooth
- Solutions to $\operatorname{deg} \psi=0 \bmod N_{2}$ form a dimension 2 lattice
- We compute a reduced basis, then search for a small linear combination of short vectors until N_{1}^{\prime} smooth
- Heuristic analysis shows we can expect $N_{1}^{\prime} \approx \sqrt{N_{1}}$. Revealing $\phi\left(E\left[N_{2}\right]\right)$ leads to a near square root speedup. (Some parameter restrictions apply.)

Computing isogenies with auxilliary information

- Let p be a prime. Let $N_{1}, N_{2} \in \mathbb{Z}$ coprime. Let E_{0} be a supersingular elliptic curve over $\mathbb{F}_{p^{2}}$. Let $\phi_{1}: E_{0} \rightarrow E_{1}$ be an isogeny of degree N_{1}.
- Let R_{0}, R_{1} be subrings of $\operatorname{End}\left(E_{0}\right)$, End $\left(E_{1}\right)$ respectively. Assume R_{0} contains more than scalar multiplications.
- Given $N_{1}, E_{1}, R_{0}, R_{1}$ and the image of ϕ_{1} on the whole N_{2} torsion, compute ϕ_{1}.
- Best previous algorithm : meet-in-the-middle in $\tilde{O}\left(\sqrt{N_{1}}\right)$

General idea

- For $\theta \in \operatorname{End}\left(E_{0}\right)$ consider $\phi=\phi_{1} \theta \hat{\phi}_{1} \in \operatorname{End}\left(E_{1}\right)$
- Evaluate ϕ on the N_{2} torsion
- Apply techniques from above on ϕ
- Compute $\operatorname{ker} \phi \cap E_{1}\left[N_{1}\right]$
- Deduce $\operatorname{ker} \hat{\phi}_{1}$, then $\hat{\phi}_{1}$ and ϕ_{1}

Remarks

- Several authors have suggested to use $j\left(E_{0}\right)=1728$ for efficiency reasons. In this case $\operatorname{End}\left(E_{0}\right)$ is entirely known and moreover it contains a degree 1 non scalar element θ. Both aspects are useful in attacks.
- The paper develops two attacks but we expect variants and improvements to come.

Impact on Key Agreement Protocol

- For $j\left(E_{0}\right)=1728$ and when $N_{1} \approx p$ and $N_{2} \approx N_{1}^{4}$ this approach leads to polynomial time key recovery (heuristic analysis)
- Assuming only that $\operatorname{End}\left(E_{0}\right)$ has a small element, then if $\log N_{2} \approx\left(\log ^{2} N_{1}\right)$, a variant of the above strategy also leads to polynomial time key recovery (heuristic analysis)
- Parameters suggested by De Feo-Jao-Plût $N_{1} \approx N_{2} \approx \sqrt{p}$ are not affected so far

Outline

Computing isogenies (generic supersingular case)

Supersingular isogeny key exchange protocol

Computing isogenies (ordinary curves and CSIDH)

Endomorphism ring computation

- Ordinary case : subexponential time (Bisson-Sutherland)
- CSIDH [CLMPR18] : we have

$$
\mathbb{Z}[\pi] \subseteq \operatorname{End}(E) \subseteq \mathbb{Z}\left[\frac{\pi+1}{2}\right]
$$

where $\pi:(x, y) \rightarrow\left(x^{p}, y^{p}\right)$
and we can easily verify whether $\frac{\pi+1}{2} \in \operatorname{End}(E)$

Computing isogenies : classical algorithms

- We expect $O\left(p^{1 / 2}\right)$ supersingular curves over \mathbb{F}_{p}
- Meet-in-the-middle approach restricted to these curves has cost $O\left(p^{1 / 4}\right)$

Computing isogenies : quantum algorithms

- Reduction to hidden shift problem : let E_{0}, E_{1} two isogenous curves. For $s \in \mathcal{C} \ell\left(\operatorname{End}\left(E_{0}\right)\right)$ such that $E_{1}=s * E_{0}$ we have

$$
f(x)=g(x s)
$$

where $f(x)=x * E_{1}$ and $g(x)=x * E_{0}$

- Kuperberg's quantum algorithm (or variants) solves this in subexponential time

SIDH vs CSIDH?

- CSIDH
- No torsion points revealed
- Subexponential quantum attacks
- Still exponential classical attacks
- SIDH
- Torsion points revealed (leading to attacks on overstreched parameters)
- Still exponential classical and quantum attacks

Outline

Computing isogenies (generic supersingular case)

Supersingular isogeny key exchange protocol

Computing isogenies (ordinary curves and CSIDH)

Conclusion

- Endomorphism ring computation \& pure isogeny problems are natural problems with some history
- Still, we need more classical and quantum cryptanalysis, especially on problem variants
- SIDH or CSIDH ? depends on two hypothetical threats
- Improved torsion point attacks (or more attacks using further specificities in SIDH)
- Devastating subexponential quantum attacks

Thanks!

- Questions?

Bibiography

- [CGL08] Charles-Goren-Lauter. Cryptographic hash functions from expander graphs.
- [D31] Deuring. Die Typen der Multiplikatorenringe elliptischer Funktionenkörper.
- [PL17] Petit-Lauter. Hard and easy problems in supersingular isogeny graphs.
- [W69] Waterhouse. Abelian varieties over finite fields.
- [KLPT14] Kohel-Lauter-Petit-Tignol. On the quaternion ८-isogeny path problem.
- [GPS17] Galbraith-Petit-Silva. Identification Protocols and Signature Schemes Based on Supersingular Isogeny Problems.
- [K96] Kohel. Endomorphism rings of elliptic curves over finite fields.

Bibiography

- [DG16] Delfs-Galbraith. Computing isogenies between supersingular elliptic curves over \mathbb{F}_{p}.
- [vOW94] van Oorschot-Wiener. Parallel collision search with application to hash functions and discrete logarithms.
- [JS19] Jaques-Schanck. Quantum cryptanalysis in the RAM model : Claw finding attacks on SIKE.
- [JdF11] Jao-de Feo. Towards Quantum-Resistant Cryptosystems from Supersingular Elliptic Curve Isogenies.
- [T17] Ti. Fault attack on supersingular isogeny cryptosystems.
- [GW17] Gelin-Welosowski. Loop-abort faults on supersingular isogeny cryptosystems.

Bibiography

- [GPST16] Galbraith-Petit-Shani-Ti. On the Security of Supersingular Isogeny Cryptosystems.
- [P17] Petit. Faster Algorithms for Isogeny Problems Using Torsion Point Images.
- [BS11] Bisson-Sutherland. Computing the endomorphism ring of an ordinary elliptic curve over a finite field.
- [CLMPR18] Castryck-Lange-Martindale-Panny-Rennes CSIDH : An Efficient Post-Quantum Commutative Group Action
- [K05] Kuperberg. A Subexponential-Time Quantum Algorithm for the Dihedral Hidden Subgroup Problem.

